Abstract:
In one embodiment of the invention, a stacking element includes a printed circuit board (PCB) and a plurality of solder bumps. The PCB has a top side and a bottom side. The top side is attached to first pins of a first device. The plurality of solder bumps are on the bottom side and attached to upper areas of second pins of a second device to provide electrical connections between the first pins and the second pins.
Abstract:
Solder bumps are fabricated by plating a first solder layer (150) on an underbump metallurgy (130), plating a second solder layer (160) having higher melting point than the first solder layer on the first solder layer and plating a third solder layer (170) having lower melting point than the second solder layer on the second solder layer. The structure then is heated to below the melting point of the second solder layer but above the melting point of the first solder layer and the third solder layer, to alloy at least some of the first solder layer with at least some of the underbump metallurgy and to round the third solder layer. Accordingly, a trilayer solder bump may be fabricated wherein the first and third layers melt at lower temperatures than the second solder layer, to thereby round the outer surface of the solder bump and alloy the base of the solder bump to the underbump metallurgy, while allowing the structure of the intermediate layer to be preserved. Solder bump fabrication as described above may be particularly useful with lead-tin solder wherein the first solder layer is eutectic lead-tin solder, the second solder layer is lead-tin solder having higher lead content than eutectic lead-tin solder and the third solder layer is eutectic lead-tin solder. In yet other embodiments, the thickness and/or composition of the outer underbump metallurgy layer and/or of the first solder layer may be selected so that upon heating, sufficient tin from the first solder layer is alloyed with at least some of the outer underbump metallurgy layer, such that the first solder layer is converted to a fourth solder layer having the same lead content as the second solder layer. Bilayer solder bumps thereby may be provided.
Abstract:
Solder bumps are fabricated by plating a first solder layer (150) on an underbump metallurgy (130), plating a second solder layer (160) having higher melting point than the first solder layer on the first solder layer and plating a third solder layer (170) having lower melting point than the second solder layer on the second solder layer. The structure then is heated to below the melting point of the second solder layer but above the melting point of the first solder layer and the third solder layer, to alloy at least some of the first solder layer with at least some of the underbump metallurgy and to round the third solder layer. Accordingly, a trilayer solder bump may be fabricated wherein the first and third layers melt at lower temperatures than the second solder layer, to thereby round the outer surface of the solder bump and alloy the base of the solder bump to the underbump metallurgy, while allowing the structure of the intermediate layer to be preserved. Solder bump fabrication as described above may be particularly useful with lead-tin solder wherein the first solder layer is eutectic lead-tin solder, the second solder layer is lead-tin solder having higher lead content than eutectic lead-tin solder and the third solder layer is eutectic lead-tin solder. In yet other embodiments, the thickness and/or composition of the outer underbump metallurgy layer and/or of the first solder layer may be selected so that upon heating, sufficient tin from the first solder layer is alloyed with at least some of the outer underbump metallurgy layer, such that the first solder layer is converted to a fourth solder layer having the same lead content as the second solder layer. Bilayer solder bumps thereby may be provided.
Abstract:
Solderability of a solder ball of solder having a high melting temperature to be used as an electrical and mechanical connection means in a ball grid array module, is improved by first removing native oxide from the solder ball (8), and, then, to prevent formation of new oxide on the solder ball, depositing a protective layer (9) of a metal enabling soldering of the solder ball by a conventional soldering paste.
Abstract:
The invention relates to a semiconductor component in a chip format, comprising a chip with at least one first insulating layer (3) and electric contact surfaces (2) devoid of said insulating layer. Conductors (5) run from the electric contact surfaces (2) to the foot areas (10) of external connection elements (12) along the insulating layer (3). Another insulating layer (8) is also provided with through openings (9) leading from the outside to the foot areas (10) of the external connection elements (12). A conductive adhesive (11) is placed in said openings (9) and metallic globules (12) are placed at least on the outside thereon. The semiconductor element can also contain a solder paste instead of the conductive adhesive in the through openings (9), whereby the metallized synthetic globules are placed thereon. The invention also relates to a method for producing the semiconductor element thus described.
Abstract:
A multiple circuit board package employing solder balls and method and apparatus for fabricating same. Two or more printed circuit boards and a plurality of electronic devices are joined together using solder balls. Alternatively, three or more printed circuit boards are joined together using the solder balls. A novel and improved solder ball connection is disclosed, along with a fixture for aligning and fixing the disposition of the pads and the solder balls during a heating cycle in which the circuit boards are placed under pressure while the solder balls are re-flowed for making an electrical connection.
Abstract:
A ball grid array package (12) utilizes stand-offs having central cores of a material with a higher melting point than solder material surrounding the core. When the ball grid package and motherboard assembly (10) are heated to the melting point of the solder material, the stand-off cores (24) remains solid and function as spacers in preventing direct contact of the package surface and the motherboard surface, thus preventing molten solder balls (14) from being squashed and flowing to adjacent ball contacts.
Abstract:
A soldering process uses two or more different solder alloys. A first solder alloy (115) that undergoes a solid-to-liquid transition at a first temperature is coated (20) onto the solderable surfaces (105) of a printed circuit board (100). A solder paste (120) that undergoes this solid-to-liquid transition at a temperature greater than the first temperature is deposited on the coated solderable portions, and is heated to a temperature that is above the first temperature but below the second temperature. During this time, the first solder alloy liquifies, while the solder paste does not. The first solder alloy wets to the individual particles in the solder paste, and alloys to the solderable surfaces and the solder particles in the solder paste. The soldering composition is subsequently cooled (40) to solidify the first solder material, forming a solid and substantially planar coating on the solderable portions of the printed circuit board.
Abstract:
A Cu ball superior in mass productivity which is effective as a bump for packaging a semiconductor of a BGA (Ball Grid Array) type and having a high dimensional precision, and a method for producing the same ball. In order words, Cu wires are cut to a standard size and obtained Cu pieces each having predetermined diameter and length are degreased, and then they are disposed in a plurality of holes having predetermined diameter, depth, and surface roughness and formed in a flat individual piece disposing fixture. Then, both the individual piece disposing fixture and individual Cu pieces are heated to be fused in an electric furnace, and then they are cooled at a predetermined cooling speed so that the Cu pieces are solidified into a ball due to the surface tension of fused metal itself, whereby in the case of Cu balls having a final diameter of 2mm or less which is obtained after having been fused and solidified, the sphericity of 90 % or more of Cu balls obtained at the same time is within 3 % of the diameter, and a solder layer or a silver solder layer is applied and formed on the outer circumferential surface of the Cu balls as required.
Abstract:
In an electronic package, a solder connection (14) for bonding faying surfaces (31, 40) is formed of tin-bismuth alloy comprising a tertiary metal, preferably gold or silver, in an amount effective to increase the melting temperature of the alloy and enhance mechanical properties of the connection at elevated temperatures typically encountered during operation. A process for forming the solder connection comprises applying a film (36) of the tertiary metal onto at least one faying surface (31) and thereafter applying tin-bismuth solder paste (38) onto the film. Preferably, a plate (26) of tin-bismuth alloy is first electroplated onto the faying surface (31), onto which the tertiary metal is plated. During heating to reflow the solder, the tertiary metal dissolves to produce a uniform liquid that forms the connection.