Abstract:
Disclosed herein is a MEMS sensor package that includes a substrate, an annular-shaped first dry film pattern stuck to one surface of the substrate, and a MEMS sensor chip including a tubular support and a detection part which is supported on the support so as to overlap a cavity of the support. The MEMS sensor chip is fixed to the substrate by sticking an annular mounting surface of the support to the first dry film pattern.
Abstract:
A device includes a first layer of an electrically insulating material and a second layer of a non-electrically insulating material (e.g., semiconductor or electrically conductive) extending on the first layer. The second layer is structured so as to define opposite, lateral walls of a microchannel, a bottom wall of which is defined by an exposed surface of the first layer. The second layer is further structured to form one or more electrical insulation barriers; each barrier includes a line of through holes, each surrounded by an oxidized region of the material of the second layer. The through holes alternate with oxidized portions of the oxidized region along the line. Each barrier extends, as a whole, laterally across the second layer up to one of the lateral walls and delimits two sections of the second layer on each side of the barrier and on a same side of the microchannel.
Abstract:
Embodiments disclosed herein include lithographic patterning systems for non-orthogonal patterning and devices formed with such patterning. In an embodiment, a lithographic patterning system comprises an actinic radiation source, where the actinic radiation source is configured to propagate light along an optical axis. In an embodiment, the lithographic patterning system further comprises a mask mount, where the mask mount is configurable to orient a surface of a mask at a first angle with respect to the optical axis. In an embodiment, the lithographic patterning system further comprises a lens module, and a substrate mount, where the substrate mount is configurable to orient a surface of a substrate at a second angle with respect to the optical axis.
Abstract:
A manufacturing method of a MEMS sensor includes forming a first substrate, wherein the first substrate includes a lower electrode provided at one surface thereof, forming a second substrate, wherein the second substrate includes a first concave-convex portion provided at one surface thereof, first-bonding one surface of the first substrate and one surface of the second substrate to face each other, forming a third substrate, wherein the third substrate includes an upper electrode provided at one surface thereof, second-bonding another surface of the second substrate and one surface of the third substrate to face each other, and forming an electrode line on another surface of the third substrate to be connected to the lower electrode and the upper electrode.
Abstract:
A semiconductor device composed of a capacitive humidity sensor comprised of a moisture-sensitive polymer layer electrografted to an electrically conductive metal layer situated on an CMOS substrate or a combined MEMS and CMOS substrate, and exposed within an opening through a passivation layer, packages composed of the encapsulated device, and methods of forming the capacitive humidity sensor within the semiconductor device, are provided.
Abstract:
A method of manufacturing a plurality of through-holes in a layer of first material by subjecting part of the layer of said first material to ion beam milling.For batch-wise production, the method comprises after a step of providing the layer of first material and before the step of ion beam milling, providing a second layer of a second material on the layer of first material, providing the second layer of the second material with a plurality of holes, the holes being provided at central locations of pits in the first layer, and subjecting the second layer of the second material to said step of ion beam milling at an angle using said second layer of the second material as a shadow mask.
Abstract:
A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
An optofluidic lithography system including a membrane, a microfluidic channel, and a pneumatic chamber is provided. The membrane may be positioned between a pneumatic chamber and a microfluidic channel. The microfluidic channel may have a height corresponding to a displacement of the membrane and have a fluid flowing therein, the fluid being cured by light irradiated from the bottom to form a microstructure. The pneumatic chamber may induce the displacement of the membrane depending on an internal atmospheric pressure thereof.