Abstract:
Provided is a method for manufacturing a substrate having a concave pattern to be used for forming a high-definition pattern while suppressing wet-spreading and bleeding of a film-forming ink, provided is a composition to be used for manufacturing the substrate, and provided are a method for forming a conductive film, an electronic circuit, and an electronic device.The method for manufacturing a substrate having a concave pattern includes: (i) a step of applying, on a substrate 1, a composition containing a polymer having an acid-dissociable group and an acid generator to form a coating film 2 and (ii) a step of irradiating a predetermined portion of the coating film 2 with radiation. The method for forming a conductive film includes applying a conductive film-forming ink on the concave pattern formed in the exposed portion of the coating film 2 and heating the ink to form a pattern 6. The electronic circuit and the electronic device are provided by using the method for forming a conductive film.
Abstract:
A method of production of a circuit board comprising a step of forming resist patterns 20 on a support 10 by a photoresist to obtain a support with resist patterns, a step of forming a curable resin composition layer 30 which is comprised of a curable resin composition on the resist patterns 20 of the support with resist patterns, a step of laying a substrate 40 on the curable resin composition layer 30, a step of making the curable resin composition which forms the curable resin composition layer 30 cure to make the curable resin composition layer 30 a cured resin layer 30a, a step of peeling off the support 10 from the curable resin composition layer 30 or the cured resin layer 30a and the resist patterns 20 before or after making the curable resin composition cure, a step of peeling off or dissolving the resist patterns 20 to remove the resist patterns 20 from the cured resin layer 30a so as to form a cured resin layer which has relief structures, and a step of forming fine wirings 50 by plating recesses of the relief structures which are formed at the cured resin layer 30a.
Abstract:
There is provided a substrate for a display device that has excellent gas barrier properties, flexibility, heat resistance and transparency, and has excellent dimensional stability, operability, and secondary processing characteristics. A substrate for a display device according to the present invention includes: an inorganic glass; and resin layers placed on both sides of the inorganic glass. Preferably, a ratio drsum/dg between a total thickness drsum of the resin layer and a thickness dg of the inorganic glass is 0.5 to 2.2. Preferably, the resin layers on both sides of the inorganic glass are each composed of the same material, each have the same thickness, and a thickness of each of the resin layers is equal to the thickness of the inorganic glass. Preferably, an average coefficient of linear expansion at 170° C. of the substrate for a display device is 20 ppm ° C.−1 or less.
Abstract:
Disclosed is a printed circuit board, including a base member, an insulating layer formed on each of both surfaces of the base member so that the surfaces of the base member are flattened, a circuit layer formed on the insulating layer, and a via for connecting the circuit layer formed on one surface of the base member with the circuit layer formed on the other surface of the base member. A method of manufacturing the printed circuit board is also provided.
Abstract:
Disclosed is a printed circuit board, including a base member, an insulating layer formed on each of both surfaces of the base member so that the surfaces of the base member are flattened, a circuit layer formed on the insulating layer, and a via for connecting the circuit layer formed on one surface of the base member with the circuit layer formed on the other surface of the base member. A method of manufacturing the printed circuit board is also provided.
Abstract:
A thin laminate passive electrical device, such as, a capacitor, and a method of fabricating a thin laminate passive electrical device are provided. The passive electrical device includes two conductors, for example, copper foil conductors, separated by a dielectric having a first layer of a first material having a softening point temperature greater than a first temperature and a first layer of a second material having a softening point temperature less than the first temperature. The first temperature may be at least 150 degrees C. or higher. By providing a first layer having a higher softening point material, shorting across the conductors, that can be promoted by the fabrication process, is prevented. Methods of fabricating passive electrical devices are also disclosed.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
The present invention relates to a circuit board structure with a capacitor embedded therein and the method for fabricating the same. The disclosed structure comprises: a core board; a buffer layer disposed on two surfaces of the core board and having a plurality of open areas; a first circuit layer disposed in the open areas; a high dielectric material film disposed over the first circuit layer and the buffer layer on at least one surface of the core board; and a second circuit layer disposed on the high dielectric material film, wherein the region where the second circuit layer corresponds to the first circuit layer functions as a capacitor, and the first circuit layer on two surfaces of the core board electrically connects to each other by at least one plated through hole. The present invention improves the problem of void generation and enhances the precision of the capacitor region.
Abstract:
A circuit board structure and a method for fabricating the same are proposed. A substrate with a first circuit layer formed on at least one surface thereof is provided. A dielectric layer is formed on the surface of the substrate, and a plurality of first and second openings are formed in the dielectric layer, wherein the second openings expose electrical connection pads of the first circuit layer. A metal layer is formed on the surface of the dielectric layer and in the first and second openings. By removing the metal layer on the surface of the dielectric layer, a second circuit layer is formed in the second openings, and a conductive structure is formed in the second openings for electrical connection with the first circuit layer. The present invention improves the bonding strength between the circuit layer and the dielectric layer, and the ability of fabricating fine circuits.
Abstract:
A method of fabricating a film carrier is provided. The method comprises the steps of providing a film; forming a metallic layer on the film, patterning the metallic layer by etching to form a plurality of metallic leads; and, patterning the film by etching to form a plurality of openings so that processing time and manufacturing cost are reduced.