Abstract:
Methods of manufacturing printed wiring boards including electrically conductive constraining cores that involve a single lamination cycle are disclosed. One example of the method of the invention includes drilling a clearance pattern in an electrically conductive constraining core, arranging the electrically conductive constraining core in a stack up that includes B-stage (semi-cured) layers of dielectric material on either side of the constraining core and additional layers of material arranged to form the at least one functional layer, performing a lamination cycle on the stack up that causes the resin in the B-stage (semi-cured) layers of dielectric to reflow and fill the clearance pattern in the electrically conductive constraining core before curing and drilling plated through holes.
Abstract:
Integrated circuits and processes for manufacturing integrated circuits are described that use printed wiring board substrates having a core layer that is part of the circuit of the printed wiring board. In a number of embodiments, the core layer is constructed from a carbon composite. In several embodiments, techniques are described for increasing the integrity of core layers in designs calling for high density clearance hole drilling. One embodiment of the invention includes a core layer that includes electrically conductive material and at least one build-up wiring portion formed on an outer surface of the core layer. In addition, the build-up portion comprises at least one micro wiring layer including a circuit that is electrically connected to the electrically conductive material in the core layer via a plated through hole.
Abstract:
A surface functional electro-textile fabric incorporates energy-active, electrically conductive or optically conductive fibers and nonconductive fibers in a woven or knitted textile fabric. The weave or knit pattern is selected so as to form floats of the electrically conductive fibers on at least one surface of the electro-textile fabric. The electro-textile fabric can be incorporated into an antenna structure that interacts with high frequency electromagnetic radiation, particularly in the frequency range of DC to 100 GHz.
Abstract:
Mono-polar and bipolar fuel cell plates are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20 % and 50 % of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
Abstract:
Electrical components are formed in a fabric during the weaving process by a series of crossing conductors in the warp and weft fibres of the fabric. Some of the crossing points provide permanent Separation of the crossing conductors, others permanent connection of the crossing conductors and others connection upon the application of pressure to the fabric. The structure provides the possibility of forming a greater range of components and more reliable component characteristics than heretofore possible.
Abstract:
There is provided a flexible, lightweight high-performance electronic fabric interface (30) that can be integral with a wearable garment (60) and can cooperate with any of a variety of different wearable electronics (65) and the like without compromising the comfort and/or durability of the garment (60). The fabric interface is formed from a flexible fiber construction of one or more conductive fibers (10) and one or more non-conductive fibers (20), the non-conductive fibers including one or more fibers having elastomeric properties.
Abstract:
A process and a device are useful for connecting contacts of a first electronic component to contacts of a second electronic component. The components are aligned in accordance with the order of connection and bonded to each other by a hot-melt adhesive charged with electrically conductive particles which are not connected to each other in an electrically conductive manner. During the bonding process, the connection regions of the components are moved toward each other in such a way that only directly opposite contacts are connected to each other electrically by the conducting particles in the adhesive. The device for implementing the process comprises a clamping device for fixing the components in the predetermined order of connection and a strip heater which heats the connection regions in order to melt the adhesive. The process and device make it possible to produce rapid and reliable contact between contacts located a short distance apart.
Abstract:
A device comprising a first and a second electrically conductive textile portion is provided, wherein the first and second textile portions are electrically isolated from each other. The device also comprises an electrical element having a first contact pad which is electrically connected to the first textile portion and a second contact pad which is electrically connected to the second textile portion, wherein the first and second textile portions are adapted to supply the electrical element with electrical power. An improved textile device is thereby provided, which is capable of supplying an electrical element with electrical power.