Abstract:
A method of improving conductive paste connections in a circuitized substrate in which at least one and preferably a series of high voltage pulses are applied across the paste and at least one and preferably a series of high current pulses are applied, both series of pulses applied separately. The result is an increase in the number of conductive paths through the paste connections from those present prior to the pulse applications and a corresponding resistance reduction in said connections.
Abstract:
A circuitized substrate (e.g., PCB) including an internal optical pathway as part thereof such that the substrate is capable of transmitting and/or receiving both electrical and optical signals. The substrate includes an angular reflector on one of the cladding layers such that optical signals passing through the optical core will impinge on the angled reflecting surfaces of the angular reflector and be reflected up through an opening (including one with optically transparent material therein), e.g., to a second circuitized substrate also having at least one internal optical pathway as part thereof, to thus interconnect the two substrates optically. A method of making the substrate is also provided.
Abstract:
An electronic card assembly is provided which includes a protective housing having a movable card therein. The card, in one example one having a magnetic stripe, has its information erased when being inserted into the housing and re-written back onto its information portion (magnetic stripe) during card withdrawal, provided appropriate human information (e.g., from a fingerprint) is received by the assembly's reader component.
Abstract:
A multilayered PCB including two multilayered portions, one of these able to electrically connect electronic components mounted on the PCB to assure high frequency connections therebetween. The PCB further includes a conventional PCB portion to reduce costs while assuring a structure having a satisfactory overall thickness for use in the PCB field. Coupling is also possible to the internal portion from these components. Methods of making these structures have also been provided.
Abstract:
An optical coupler arrangement which is employed for replicating surface features of diverse types of optical devices. Also disclosed is to a novel method of accurately replicating surface features of optical devices; particularly through the utilization of the novel optical coupler arrangement.
Abstract:
A detachable, logic leaf module having dendritic projections on a surface is connected to a recessed area on the surface of a cluster interface board. The projections are used for electrically connecting the logic module device to the cluster interface board or the like, the projections on the surface of the logic leaf being flexibly and conductively wired to the receiving area on the surface of the cluster interface board. The logic leaf connector is removable without the need for solder softening thermal cycles or special tools, and permits the simple removal or replacement of an individual leaf at any time.
Abstract:
A flexible, high density decal and the use thereof methods of forming detachable electrical interconnections between a flexible chip carrier and a printed wiring board. The flexible decal has fine-pitch pads on a first surface and pads of a pitch wider than the fine pitch on a second surface, the fine-pitch pads on the first surface designed to electrically connect to a semiconductor device, and the wider-pitch pads on the second surface designed to electrically connect to a printed wiring board or the like. The pads on the first surface are conductively wired to the pads on the second surface through one or more insulating levels in the flexible decal.
Abstract:
An electrical assembly which includes a circuitized substrate including a first plurality of dielectric and electrically conductive circuit layers alternatively oriented in a stacked orientation, a thermal cooling structure bonded to one of the dielectric layers and at least one electrical component mounted on the circuitized substrate. The circuitized substrate includes a plurality of electrically conductive and thermally conductive thru-holes located therein, selected ones of the thermally conductive thru-holes thermally coupled to the electrical component(s) and extending through the first plurality of dielectric and electrically conductive circuit layers and being thermally coupled to the thermal cooling structure, each of these selected ones of thermally conductive thru-holes providing a thermal path from the electrical component to the thermal cooling structure during assembly operation. The thermal cooling structure is adapted for having cooling fluid pass there-through during operation of the assembly. A method of making the substrate is also provided.
Abstract:
A method of making an interposer in which at least two dielectric layers are bonded to each other to sandwich a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts which are formed within and protrude from openings which are also formed within the dielectric layers as part of this method. The resulting interposer is ideally suited for use as part of a test apparatus to interconnect highly dense patterns of solder ball contacts of a semiconductor chip to lesser dense arrays of contacts on the apparatus's printed circuit board.
Abstract:
A method of forming a capacitive substrate in which at least one capacitive dielectric layer of material is screen or ink jet printed onto a conductor and the substrate is thereafter processed further, including the addition of thru-holes to couple selected elements within the substrate to form at least two capacitors as internal elements of the substrate. The capacitive substrate may be incorporated within a larger circuitized substrate, e.g., to form an electrical assembly. A method of making an information handling system including such substrates is also provided.