Abstract:
PURPOSE: A selectively positioning method of a nanostructure on a substrate, and a nano molecular electronic device including the nanostructure are provided to use an electrostatic attraction for arranging and positioning the nanostructure. CONSTITUTION: A selectively positioning method of a nanostructure on a substrate comprises the following steps: forming a photoresist pattern(20) on the substrate(10); controlling the line width of the pattern in nano level to form a nano unit photoresist layer; forming a protective layer(30) on the portion without the nano unit photoresist layer; removing the nano unit photoresist layer form the substrate; forming an adsorption layer(40); and applying a solution containing a nano-material.
Abstract:
염료감응형 태양전지 및 이의 제조 방법이 개시된다. 염료감응형 태양전지는 탄소나노로드층을 구비한 하부전극; 및 상부전극과 하부전극 사이에 구비되고, 탄소나노튜브를 갖는 염료층을 포함할 수 있다. 본 발명은 금속 전극보다 물리적 특성이 우수한 탄소나노로드 전극을 포함하는 태양전지 및 이의 제조 방법을 제공할 수 있는 효과가 있다. 태양전지, 탄소나노튜브, 탄소나노로드
Abstract:
본 발명은 염료감응형 태양전지에 관한 것으로, 보다 상세하게는 상대전극으로 탄소전극을 이용함으로써 제조비용의 절감 내지 생산성의 향상 등을 도모함과 더불어, 에너지 효율을 증대시킬 수 있는 염료감응형 태양전지 및 그 제조방법에 관한 것이다. 본 발명에 의한 염료감응형 태양전지는 전해질층에 의해 분리된 작동전극 및 상대전극을 포함하고, 상기 상대전극은 제1투명기판에 형성된 탄소전극을 포함하며, 상기 탄소전극은 도전성 투명탄소전극인 것을 특징으로 한다. 이와 같이 본 발명은 상대전극으로 저가의 탄소전극을 이용함으로써 그 제조비용을 대폭 절감할 뿐만 아니라, 탄소전극의 내부식성 내지 내산화성 등의 특성으로 인해 전해질층과의 산화반응을 방지하여 태양전지의 효율을 향상시킬 수 있다. 염료, 감응, 태양, 전지, 상대전극, 작동전극, 탄소전극
Abstract:
A multilayer resist structure and a method for fabricating a thin film pattern using the same are provided to lower the etching aspect ratio of the lower thin film and increase the etching selectivity of the lower thin film using the PVD amorphous carbon mask. A method for fabricating the thin film pattern comprises the step for laminating the PVD amorphous carbon mask(130) on the lower thin film(120); the step for laminating successively the hard mask on the PVD amorphous carbon mask, the bottom anti-reflective coations(150), and the photoresist pattern(160); the step for etching the bottom anti-reflective layer and the hard mask using the photoresist pattern as the etching mask; the step for etching the PVD amorphous carbon layer using the patterned hard mask as the etching mask; the step for etching the lower thin film using the PVD amorphous carbon layer as the etching mask.
Abstract:
A dye-sensitive solar cell and a manufacturing method thereof are provided to improve charge mobility by using a dye layer with a carbon nano tube and to provide a nano metal doping effect for enabling control of a static band gap capable of adjusting the efficiency of a solar cell and changes of optical features. A dye-sensitive solar cell includes a lower electrode(10), a dye layer(20) and a upper electrode(30). The lower electrode has a substrate(11), a catalyst layer(12) and a carbon nanorod layer(15). The substrate is a glass substrate deposited with FTO(Fluorine doped Tin Oxide). The dye layer is provided between the lower electrode and the upper electrode. The day layer has a Ti metal layer(13) and an Ni metal layer(14). The carbon nanorod layer is made through a hot-filament plasma chemical vapor deposition(PECVD). The dye layer is formed by mixing a carbon nano tube(21) with dye(22). The carbon nano tube is formed through the hot-filament plasma chemical vapor deposition(PECVD). The upper electrode has a substrate(31) and conductive oxide(32) deposited on the substrate.
Abstract:
An apparatus and a method for manufacturing highly dense carbon nanotubes are provided to prevent impurities from being induced while retaining conductive characteristics by using conductive amorphous carbon thin film as a catalyst. An apparatus for manufacturing highly dense carbon nanotubes includes: a support unit which supports a substrate; a vacuum chamber(120) in which the support unit is installed; a jig(130) which fixes the support unit to the vacuum chamber; a gas supply line; a cooling line; a tungsten filament(140); a gas distributor(150); a gas control unit(190); and a catalyst formation unit which has plural electromagnetic powers for plasma generation and plural graphite targets connected to the electromagnetic powers, and forms a catalyst layer on the substrate with the graphite target using an asymmetric magnetron sputtering method. The catalyst layer is a conductive amorphous carbon thin film.
Abstract:
An organic thin film transistor and a manufacturing method thereof are provided to improve insulating characteristics of an organic insulating layer by adding insulating characteristics of a hydrogenated amorphous carbon layer. A gate electrode(200) is formed on a substrate(100). An insulating layer(300) is formed on the gate electrode. A hydrogenated amorphous carbon layer(400) is formed on the insulating layer. An active layer(500) is formed on the hydrogenated amorphous carbon layer. A source electrode(600) and a drain electrode(700) are formed on the active layer. The substrate is a polyimide substrate or a polyestersulfone substrate. The gate electrode is an Au layer. The insulating layer is polyvinylcarbonate or polyvinylphenol.
Abstract:
Manufacturing methods of gold nano wire are provided to mass-produce gold nano wire in a simple process and to carry out accurate accumulation of semiconductor device efficiently by arranging nano wire in a line. A manufacturing method of gold nano wire comprises a step of painting a DNA solution comprising gold nano particle on a substrate. Optionally, the DNA solution is adhered to the substrate by liquid coating method or vacuum evaporation method. The prepared substrate is painted with a solution comprising gold nano particle and reducing agent. The adhered DNA on the substrate is optionally arranged in a line or in a cross stripe. An additional manufacturing method of gold nano wire comprises steps of: forming adhesion layer to improve adherence of a solution on a substrate by the liquid coating method or the vacuum evaporation method; preparing a primary admixture solution by mixing reducing agent and gold nano particle; and preparing a secondary admixture solution by mixing the primary admixture solution and DNA, followed by painting the secondary admixture solution on the substrate. The DNA in the secondary admixture solution is optionally arranged in a line or in a cross stripe on the substrate.
Abstract:
A method for fabricating a conductive carbon thin film of high hardness and an application of the carbon thin film as an electrode for a thin film electro-luminescent device are provided to protect a substrate and a thin film against oxidation and moisture by using the carbon thin film. A carbon thin film having high conductivity and high hardness is manufactured by using a closed-field unbalanced magnetron sputtering apparatus. The closed-field unbalanced magnetron sputtering apparatus includes a chamber(20) composed of a substrate support member, a jig(22) for fixing the substrate support member, a gas supply member, a DC bias power supply(25), and a cooling line(23), and an evacuating member for maintaining a vacuum condition in the chamber. The closed-field unbalanced magnetron sputtering apparatus uses as a sputtering target a graphite target attached to an electromagnetic power unit.
Abstract:
다이아몬드상 카본 필름(Diamond Like Carbon Film: 이하 "DLC 필름"이라 함)을 코팅하는 장치 및 그 코팅 방법에 관한 것으로서, 플렉시블 기판을 공중에 지지하는 수단, 지지 수단이 설치된 진공 챔버, 진공 챔버의 내부를 코팅에 적합한 진공 상태로 유지시키는 진공 수단, 가스공급 수단, 상기 진공 챔버 내의 지그에 접속되어 각각 다른 수치의 전류를 인가하여 불균일하게 플라즈마 자장을 형성하도록 하여 비대칭 마그네트론(Closed Field Unbalanced Magnetron) 필드를 형성하도록 하는 전원 공급수단 및 플렉시블 기판 위에 소정의 원소로 된 다이아몬드 상 카본 필름을 적층하는 적층 수단으로 구성을 마련한다. 상기와 같은 플렉시블 기판 DLC 필름 코팅 장치 및 그 방법은 기본의 화학기상성장법(CVD) 종류가 아닌 상온에서 증착이 가능한 스퍼터 공정을 이용하며, 플렉시블 기판에 대해 열과 플라즈마의 영향을 최소화하기 위해 단시간 증착을 하며, 비대칭 마그네트론 스퍼터 공정으로 대면적 증착과 높은 증착율에 의한 균일 증착이 가능하기 때문에 산업화 응용에 더욱 효과적이다. 본 발명의 또 다른 효과는 플렉시블 기판위에 DLC 필름을 코팅하여 마모나 부식에 의한 영향을 줄이는 것이다. 플렉시블 기판, DLC, 코팅, 비대칭 마그네트론, 박막, 스퍼터