Abstract:
A method of forming a patterned chemical epitaxy template, for orientation of a self-assemblable block copolymer comprising first and second polymer blocks, on a surface of a substrate, the method including applying a primer layer of a primer composition to the surface, the primer composition comprising a first polymer moiety having a chemical affinity with the first polymer blocks and a second polymer moiety having a chemical affinity with the second polymer blocks, selectively exposing the surface, the primer layer and any overlying layer to actinic radiation to provide exposed and unexposed regions, to render labile the first polymer moiety in the exposed region, and removing the labile first polymer moiety from the exposed region to deplete the primer layer surface in the exposed region of first polymer moiety to form the patterned chemical epitaxy template.
Abstract:
A lithographic process includes the use of a silicon-containing polymer or a compound that includes at least one element selected from the group consisting of: Ta, W, Re, Os, Ir, Ni, Cu or Zn in a resist material for an EUV lithographic process. The wavelength of the EUV light used in the process is less than 11 nm, for example 6.5-6.9 nm. The invention further relates to novel silicon-containing polymers.
Abstract:
A method of lithography on a substrate uses a self-assembled polymer (SAP) layer deposited on the substrate, with first and second domains arranged in a pattern across the layer. A planarization layer is formed over the SAP and a development etch applied to substantially remove a portion of the planarization layer over the second domain leaving a cap of the planarization layer substantially covering the first domain. The uncapped second domain is then removed from the surface by a breakthrough etch leaving the capped first domain as a pattern feature on the surface. A transfer etch may then be used to transfer the pattern feature to the substrate using the capped first domain. The capping allows the second domain to be removed, e.g., without excessive loss of lateral feature width for the remaining first domain, even when the difference in etch resistance between the first and second domains is small.
Abstract:
A self-assemblable polymer is disclosed, having first and second molecular configurations with the first molecular configuration has a higher Flory Huggins parameter for the self-assemblable polymer than the second molecular configuration, and the self-assemblable polymer is configurable from the first molecular configuration to the second molecular configuration, from the second molecular configuration to the first molecular configuration, or both, by the application of a stimulus. The polymer is of use in a method for providing an ordered, periodically patterned layer of the polymer on a substrate, by ordering and annealing the polymer in its second molecular configuration and setting the polymer when it is in the first molecular configuration. The second molecular configuration provides better ordering kinetics and permits annealing of defects near its order/disorder transition temperature, while the first molecular configuration, with a higher order/disorder transition temperature, provides low line edge/width roughness for the pattern formed on setting.
Abstract:
A method of determining a position of an imprint template in an imprint lithography apparatus is disclosed. In an embodiment, the method includes illuminating an area of the imprint template in which an alignment mark is expected to be found by scanning an alignment radiation beam over that area, detecting an intensity of radiation reflected or transmitted from the area, and identifying the alignment mark via analysis of the detected intensity.
Abstract:
A method of determining an uncertainty in the position of a domain within a self- assembly block copolymer (BCP) feature. The method includes simulating a BCP feature, calculating a minimum energy position of a first domain within the simulated BCP feature, simulating the application of a potential that causes the position of the first domain to be displaced from the minimum energy position, simulating release of the potential back toward the minimum energy, recording a plurality of energies of the BCP feature during the release and recording at each of the plurality of energies a displacement of the first domain from the minimum energy position, calculating, from the recorded energies and recorded displacements, a probability distribution indicating a probability of the first domain being displaced from the minimum energy position, and, from the probability distribution, calculating an uncertainty in the position of the first domain within the BCP feature.
Abstract:
A method of forming a plurality of regularly spaced lithography features, e.g. contact holes, including: providing a trench on a substrate, the trench having opposing side-walls and a base, with the side-walls having a width therebetween, wherein the trench is formed by photolithography including exposing the substrate using off-axis illumination whereby a modulation is provided to the side-walls of the trench; providing a self-assemblable block copolymer having first and second blocks in the trench; causing the self-assemblable block copolymer to self-assemble into an ordered layer in the trench, the layer having first domains of the first block and second domains of the second block; and selectively removing the first domain to form at least one regularly spaced row of lithography features having the second domain along the trench.
Abstract:
A method of designing an epitaxy template to direct self-assembly of a block copolymer on a substrate into an ordered target pattern involves providing a primary epitaxy template design and then varying the design to optimize a pattern fidelity statistic, such as placement error, relative to the target pattern by modelling predicted self-assembled block copolymer patterns and optimizing pattern placement as a function of a varied design parameter. In addition to varying a design parameter to optimize the pattern fidelity statistic, a random error in the template design is included prior to modelling predicted patterns in order to compensate for expected template inaccuracy in practice. The inclusion of a realistic random error in the template design, in addition to systematic variation of a design parameter, may improve the template design optimization to render the result less sensitive to error which may be inevitable in practice.
Abstract:
A method is disclosed to form a patterned epitaxy template, on a substrate, to direct self-assembly of block copolymer for device lithography. A resist layer on a substrate is selectively exposed with actinic (e.g. UV or DUV) radiation by photolithography to provide exposed portions in a regular lattice pattern of touching or overlapping shapes arranged to leave unexposed resist portions between the shapes. Exposed or unexposed resist is removed with remaining resist portions providing the basis for a patterned epitaxy template for the orientation of the self-assemblable block copolymer as a hexagonal or square array. The method allows for simple, direct UV lithography to form patterned epitaxy templates with sub-resolution features.
Abstract:
A method is disclosed to form a patterned template on a substrate, to direct orientation of a self-assemblable block copolymer. The method involves providing a resist layer of a positive tone resist on the substrate and overexposing the resist with actinic (e.g. UV) radiation by photolithography to expose a continuous region of the resist layer with a sub-resolution unexposed resist portion at the interface between the resist and the substrate. The resist portion remaining at the interface, after removal of the exposed region, provides a basis for a chemical epitaxy template. The method may allow for simple, direct photolithography to form a patterned chemical epitaxy template and optionally include an accurately co-aligned graphoepitaxy feature and/or a substrate alignment feature.