Abstract:
Disclosed is a method and associated inspection apparatus for detecting variations on a surface of a substrate. The method comprises providing patterned inspection radiation to a surface of a substrate. The inspection radiation is patterned such that an amplitude of a corresponding enhanced field is modulated in a manner corresponding to the patterned inspection radiation. The scattered radiation resultant from interaction between the enhanced field and the substrate surface is received and variations on the surface of the substrate are detected based on the interaction between the enhanced field and the substrate surface. Also disclosed is a method of detecting any changes to at least one characteristic of received radiation, the said changes being induced by the generation of a surface plasmon at said surface of the optical element.
Abstract:
Disclosed is an apparatus for processing at least a first substrate in a lithographic process, which first substrate comprises a mask layer and one or more marks arranged below said mask layer, the apparatus comprising a first substrate support configured to hold the first substrate, a clearing tool configured to clear at least one of the marks by clearing an area of the mask layer above said mark while the first substrate is arranged on the first substrate support, and a measurement tool configured to determine a position of at least one of the cleared marks while the first substrate is arranged on the first substrate support.
Abstract:
An electron beam inspection apparatus, the apparatus including a plurality of electron beam columns (600), each electron beam column configured to provide an electron beam and detect scattered or secondary electrons from an object, and an actuator system (600, 610) configured to move (640, 630) one or more of the electron beam columns relative to another one or more of the electron beam columns. The actuator system may include a plurality of first movable structures at least partly overlapping a plurality of second movable structures, the first and second movable structures supporting the plurality of electron beam columns.
Abstract:
A method for manufacturing a membrane assembly for EUV lithography, the method comprising: providing a stack comprising a planar substrate and at least one membrane layer, wherein the planar substrate comprises an inner region and a border region around the inner region; positioning the stack on a support such that the inner region of the planar substrate is exposed; and selectively removing the inner region of the planar substrate using a non-liquid etchant, such that the membrane assembly comprises: a membrane formed from the at least one membrane layer; and a border holding the membrane, the border formed from the border region of the planar substrate.
Abstract:
A method of forming a plurality of regularly spaced lithography features, the method including providing a self-assemblable block copolymer having first and second blocks in a plurality of trenches on a substrate, each trench including opposing side-walls and a base, with the side-walls having a width therebetween, wherein a first trench has a greater width than a second trench; causing the self-assemblable block copolymer to self-assemble into an ordered layer in each trench, the layer having a first domain of the first block alternating with a second domain of the second block, wherein the first and second trenches have the same number of each respective domain; and selectively removing the first domain to form regularly spaced rows of lithography features having the second domain along each trench, wherein the pitch of the features in the first trench is greater than the pitch of the features in the second trench.
Abstract:
A graphoepitaxy template to align a self-assembled block polymer adapted to self-assemble into a 2-D array having parallel rows of discontinuous first domains extending parallel to a first axis, mutually spaced along an orthogonal second axis, and separated by a continuous second domain. The graphoepitaxy template has first and second substantially parallel side walls extending parallel to and defining the first axis and mutually spaced along the second axis to provide a compartment to hold at least one row of discontinuous first domains of the self-assembled block copolymer on the substrate between and parallel to the side walls, and separated therefrom by a continuous second domain. The compartment has a graphoepitaxial nucleation feature arranged to locate at least one of the discontinuous first domains at a specific position within the compartment. Methods for forming the graphoepitaxy template and its use for device lithography are also disclosed.
Abstract:
Methods and apparatus for forming a patterned layer of material are disclosed. In one arrangement, a deposition-process material is provided in gaseous form. A layer of the deposition-process material is formed on the substrate by causing condensation or deposition of the gaseous deposition-process material. A selected portion of the layer of deposition-process material is irradiated to modify the deposition-process material in the selected portion.
Abstract:
The invention relates to a method for revealing sensor targets on a substrate covered with a layer, said method comprising the following steps: determining locations of first areas on the substrate with yielding target portions and of second areas on the substrate with non-yielding target portions; at least partially removing feature regions of the layer covering sensor targets in the second areas to reveal sensor targets in the second areas; measuring a location of the revealed sensor targets in the second areas; determining a location of sensor targets in the first areas based on the measured location of the revealed sensor targets in the second areas; and at least partially removing sensor target regions of the layer covering the sensor targets in the first areas using the determined location of the sensor targets in the first areas.
Abstract:
A method of determining an uncertainty in the position of a domain within a self- assembly block copolymer (BCP) feature. The method includes simulating a BCP feature, calculating a minimum energy position of a first domain within the simulated BCP feature, simulating the application of a potential that causes the position of the first domain to be displaced from the minimum energy position, simulating release of the potential back toward the minimum energy, recording a plurality of energies of the BCP feature during the release and recording at each of the plurality of energies a displacement of the first domain from the minimum energy position, calculating, from the recorded energies and recorded displacements, a probability distribution indicating a probability of the first domain being displaced from the minimum energy position, and, from the probability distribution, calculating an uncertainty in the position of the first domain within the BCP feature.
Abstract:
A method of designing an epitaxy template to direct self-assembly of a block copolymer on a substrate into an ordered target pattern involves providing a primary epitaxy template design and then varying the design to optimize a pattern fidelity statistic, such as placement error, relative to the target pattern by modelling predicted self-assembled block copolymer patterns and optimizing pattern placement as a function of a varied design parameter. In addition to varying a design parameter to optimize the pattern fidelity statistic, a random error in the template design is included prior to modelling predicted patterns in order to compensate for expected template inaccuracy in practice. The inclusion of a realistic random error in the template design, in addition to systematic variation of a design parameter, may improve the template design optimization to render the result less sensitive to error which may be inevitable in practice.