Abstract:
A micromechanical device that includes a first substrate, at least one first cavity, and a sealed inlet to the first cavity, the inlet extending through the first substrate. The inlet includes a laser-drilled first subsection and a plasma-etched second subsection, the plasma-etched second subsection having an opening to the first cavity, and the inlet in the first subsection being sealed by a molten seal made of molten mass of at least the first substrate. A combined laser drilling and plasma etching method for manufacturing micromechanical devices is also described.
Abstract:
A manufacturing method for a micromechanical device including an inclined optical window and a corresponding micromechanical device. The method includes: providing a first substrate having front and back sides and a recess; applying a second substrate on the front side, the second substrate being thermally deformable and having a first through hole above the recess which has a smaller lateral extension than the recess; forming a flap area on the second substrate above/below the first through hole which is situated in a first position with respect to the first substrate; thermally deforming the second substrate, the flap area being moved into a second position within the recess which is inclined with respect to the first position and optionally subsided into the recess; removing the flap area from the second substrate; and attaching the optical window on the second substrate above/below the first through hole in the second inclined position.
Abstract:
A micro-electro-mechanical device formed in a monolithic body of semiconductor material accommodating a first buried cavity; a sensitive region above the first buried cavity; and a second buried cavity extending in the sensitive region. A decoupling trench extends from a first face of the monolithic body as far as the first buried cavity and laterally surrounds the second buried cavity. The decoupling trench separates the sensitive region from a peripheral portion of the monolithic body.
Abstract:
A method manufactures a gas sensor integrated on a semiconductor substrate. The method includes: realizing a first plurality of openings in the semiconductor substrate; realizing a crystalline silicon membrane suspended on the semiconductor substrate, forming an insulating cavity buried in the substrate; realizing a second plurality of openings in the semiconductor substrate, so as to totally suspend on the semiconductor substrate the crystalline silicon membrane; realizing, through a thermal oxidation process of the totally suspended crystalline silicon membrane, a suspended dielectric membrane; realizing, through selective photolithography, a heating element; realizing, through selective photolithography, electrodes and a pair of electric contacts; and selectively realizing, above the electrodes, a sensitive element by compacting layers of metallic oxide through a sintering process generated in the gas sensor by connecting the electrodes to a voltage generator.
Abstract:
In a method for manufacturing a semiconductor pressure sensor, after a reference pressure chamber is formed inside a semiconductor substrate and a diaphragm is formed from a part of the semiconductor substrate, a heat treatment is performed to form an insulation film, an element, or the like on the semiconductor substrate. At that time, a heat treatment temperature is controlled to be lower than (−430P0+1430)° C. where P0 is an internal pressure (atm) of the reference pressure chamber at a room temperature. Accordingly, crystal defects can be prevented from being produced in the diaphragm.
Abstract:
The invention relates to a method for producing micromechanic sensors, and the sensors produced thereby, in which openings (2) are made in a semiconductor substrate (1). A subsequent temperature treatment is carried out after the openings (2) have been made in the semiconductor substrate (1), converting said openings (2) into cavities in the depth of the substrate (1).
Abstract:
Es wird ein Verfahren zur Herstellung von mikromechanischen Sensoren und damit hergestellte Sensoren vorgeschlagen, bei denen in ein Halbleitersubstrat (1) Öffnungen (2) eingebracht werden. Nach dem Einbringen der Öffnungen (2) in das Halbleitersubstrat (1) erfolgt eine Temperaturnachbehandlung, bei der die öffnungen (2) zu Hohlräumen in der Tiefe des Substrats (1) umgewandelt werden.
Abstract:
A method for manufacturing a MEMS device includes a hole forming step of forming a plurality of holes concaved from a principal surface in a substrate material including a semiconductor, a connecting-hollow-portion forming step of forming a connecting hollow portion that connects the plurality of holes together, and a movable-portion forming step of, by partially moving the semiconductor of the substrate material so as to close at least one part of the plurality of holes, forming a hollow portion that exists inside the substrate material and a movable portion that coincides with the hollow portion when viewed in a thickness direction of the substrate material.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.