Abstract:
A thermocouple having a support tube configured to receive a pair of wires of dissimilar metals. The pair of wires of the thermocouple connected at a junction adjacent to one end of the support tube. The thermocouple further including a cap attached to the opposing end of the support tube, wherein the cap receives the free ends of the pair of wires. The cap allowing the pair of wires to translate freely therethrough to accommodate the difference in thermal expansion and contraction of the pair of wires relative to the thermal expansion and contraction of the support tube.
Abstract:
A Bernoulli wand (50) for transporting semiconductor wafers. The wand (50) has a head portion (54) having a plurality of gas outlets (74, 75) configured to produce a flow of gas along an upper surface of a wafer to create a pressure differential between the upper surface of the wafer and the lower surface of the wafer. The pressure differential generates a lift force that supports the wafer below the head portion (54) of the wand in a substantially non-contacting manner, employing the Bernoulli principle. The wand (50) has independently controllable gas channels (70, 80) configured to provide flow to different sets of gas outlet holes (74, 75). The gas outlet holes (74, 75) and gas channels (70, 80) are configured to support a wafer using the Bernoulli principle.
Abstract:
Methods of forming a metal carbide film are provided. In some embodiments, methods for forming a metal carbide film in an atomic layer deposition (ALD) type process comprise alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of a metal compound 102 and one or more plasma-excited species of a carbon-containing compound 106. In other embodiments, methods of forming a metal carbide film in a chemical vapor deposition (CVD) type process comprise simultaneously contacting a substrate in a reaction space with a metal compound 102 and one or more plasma-excited species of a carbon-containing compound 106. The substrate is further exposed to a reducing agent 103. The reducing agent removes impurities, including halogen atoms and/or oxygen atoms.
Abstract:
Methods for forming metal silicate films are provided. The methods comprise contacting a substrate with alternating and sequential vapor phase pulses of a metal source chemical, a silicon source chemical and an oxidizing agent. In preferred embodiments, an alkyl amide metal compound and a silicon halide compound are used. Methods according to preferred embodiments can be used to form hafnium silicate and zirconium silicate films with substantially uniform film coverages on substrate surfaces comprising high aspect ratio features (e.g., vias and/or trenches).
Abstract:
A method for depositing a carbon doped epitaxial semiconductor layer (30) comprises maintaining a pressure of greater than about 700 torr in a process chamber (122) housing a patterned substrate (10) having exposed single crystal material (20). The method further comprises providing a flow of a silicon source gas to the process chamber (122). The silicon source gas comprises dichlorosilane. The method further comprises providing a flow of a carbon precursor (132) to the process chamber (122). The method further comprises selectively depositing the carbon doped epitaxial semiconductor layer (30) on the exposed single crystal material (20).
Abstract:
An atomic deposition (ALD) thin film deposition apparatus includes a deposition chamber configured to deposit a thin film on a wafer mounted within a space defined therein. The deposition chamber comprises a gas inlet that is in communication with the space. A gas system is configured to deliver gas to the gas inlet of the deposition chamber. At least a portion of the gas system is positioned above the deposition chamber. The gas system includes a mixer configured to mix a plurality of gas streams. A transfer member is in fluid communication with the mixer and the gas inlet. The transfer member comprising a pair of horizontally divergent walls configured to spread the gas in a horizontal direction before entering the gas inlet.
Abstract:
A method is proposed for improving the adhesion between a diffusion barrier film and a metal film. Both the diffusion barrier film and the metal film can be deposited in either sequence onto a semiconductor substrate. A substrate comprising a first film, which is one of a diffusion barrier film or a metal film, with the first film being exposed at least at part of the surface area of the substrate, is exposed to an oxygen-containing reactant to create a surface termination of about one monolayer of oxygen-containing groups or oxygen atoms on the exposed parts of the first film. Then the second film, which is the other one of a diffusion barrier film and a metal film, is deposited onto the substrate. Furthermore, an oxygen bridge structure is proposed, the structure comprising a diffusion barrier film and a metal film having an interface with the diffusion barrier film, wherein the interface comprises a monolayer of oxygen atoms.
Abstract:
Multiple sequential processes 140 are conducted in a reaction chamber to form ultra high quality silicon-containing compound layers, including silicon nitride layers. In a preferred embodiment, a silicon layer is deposited 100 on a substrate using trisilane as the silicon precursor. The silicon precursor is removed 110 from the reaction chamber. A silicon nitride layer is then formed by nitriding 120 the silicon layer. The nitrogen reactant is removed 110 from the reaction chamber. By repeating these steps 100, 110, 120 and 130, a silicon nitride layer of a desired thickness is formed.
Abstract:
In accordance with one aspect of the present invention, a method is provided for transporting a workpiece in a semiconductor processing apparatus comprising a transfer chamber, a process chamber, and a gate valve between the transfer chamber and the process chamber. The method comprises vacuum pumping the transfer chamber to achieve a first pressure in the transfer chamber and vacuum pumping the process chamber to achieve a second pressure in the process chamber. An inert gas is flowed into the transfer chamber and shut off in the process chamber. The transfer chamber is isolated from pumping, but pumping continues from the process chamber. The gate valve is opened after isolating the transfer chamber from pumping. The workpiece is then transferred between the transfer chamber and the process chamber. A definitive flow direction from transfer chamber to process chamber is thereby achieved, minimizing risk of back-diffusion.
Abstract:
The present methods provide tools for growing conformal metal thin films (150), including metal nitride, metal carbide and metal nitride carbide thin films. In particular, methods are provided for growing such films from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide, transition metal nitride and transition metal nitride carbide thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures incorporating metallic thin films, and methods for forming the same, are also disclosed.