Abstract:
A micro-electromechanical fluid ejector having an inner structure on the bottom of the top of the membrane for isolating the conductor, and an outer structure, away from the center of the membrane, on the bottom of the top of the membrane to stop excessive flexing of the membrane leading to inter-electrode contact.
Abstract:
A method for fabricating a membrane having a corrugated, multi-layer structure, comprising the steps of: providing a substrate having an insulator layer on the top surface of the substrate, a conductive layer on the insulator layer, a sacrificial layer on said conductive layer, and a second conductive layer; patterning a series of holes the second conductive layer to allow release etchant to have access to a second sacrificial layer; depositing the second sacrificial layer onto said second conductive layer so that the series of holes are filled with the second sacrificial layer; patterning the second sacrificial layer with a radial and/or concentric grid pattern so that a third conductive layer when deposited will form the support structure and top portion of the corrugated structure; depositing the third conductive layer so that the grid pattern is filled in and is in contact with the second conductive layer; removing the first and second sacrificial layer by immersing the device in a release etchant.
Abstract:
A method for dicing small devices including MEMS, ink jet printheads, lasers etc. The method comprises making a first pass cut into a substrate with a blade of narrow kerf and having long wear characteristics. This first pass cut is then followed with a polishing blade of wider kerf having desirable smooth cutting qualities.
Abstract:
The invention provides a method of producing a through-hole, a substrate used to produce a through-hole, a substrate having a through-hole, and a device using such a through-hole or a substrate having such a through-hole, which are characterized in that: a through-hole can be produced only by etching a silicon substrate from its back side; the opening length d can be precisely controlled to a desired value regardless of the variations in the silicon wafer thickness, and the orientation flat angle, and also regardless of the type of a silicon crystal orientation-dependent anisotropic etchant employed; high productivity, high production reproducibility, and ease of production can be achieved; a high-liberality can be achieved in the shape of the opening end even if temperature treatment is performed at a high temperature for a long time; and a high-precision through-hole can be produced regardless of the shape of a device formed on the surface of a substrate.
Abstract:
A laminated structure includes a wafer member with a membrane attached thereto, the membrane being formed of substantially hydrogen-free boron nitride having a nominal composition B.sub.3 N. The structure may be a component in a mechanical device for effecting a mechanical function, or the membrane may form a masking layer on the wafer. The structure includes a body formed of at least two wafer members laminated together with a cavity formed therebetween, with the boron nitride membrane extending into the cavity so as to provide the structural component such as a support for a heating element or a membrane in a gas valve. In another aspect borom is selectively diffused from the boron nitride into a surface of a silicon wafer. The surface is then exposed to EDP etchant to which the diffusion layer is resistant, thereby forming a channel the wafer member with smooth walls for fluid flow.
Abstract:
A microfluidic device including a fluid ejection channel defined by a fluid barrier and an orifice, or nozzle, for containing and/or passing fluids, and further including micro-electromechanical systems (MEMS) and/or electronic circuitry may be fabricated on a silicon substrate and included in a fluid ejection system. Various microfabrication techniques used for fabricating semiconductor devices may be used to manufacture such microfluidic devices.
Abstract:
An ejection head chip and method for a fluid ejection device and a method for reducing a silicon shelf width between a fluid supply via and a fluid ejector stack. The ejection head chip includes a silicon substrate and a fluid ejector stack deposited on the silicon substrate, wherein at least one metal layer of the fluid ejector stack is isolated from a fluid supply via etched in the ejection head chip by an encapsulating material.
Abstract:
A microfluidic die may include a microfluidic passage and a protective layer provided adjacent to internal surfaces of the microfluidic passage. The protective layer may include a protective nano-crystalline material and a protective amorphous matrix encapsulating the protective nano-crystalline material.
Abstract:
A method for manufacturing a bonded substrate body in which an end portion of an adhesive is located at a position retreated in a direction to the inside of the bonded substrate body from an end surface of a bonding region of a first substrate and a second substrate includes forming a film on the end portion of the adhesive.
Abstract:
An embodiment method includes forming a first plurality of bond pads on a device substrate, depositing a spacer layer over and extending along sidewalls of the first plurality of bond pads, and etching the spacer layer to remove lateral portions of the spacer layer and form spacers on sidewalls of the first plurality of bond pads. The method further includes bonding a cap substrate including a second plurality of bond pads to the device substrate by bonding the first plurality of bond pads to the second plurality of bond pads.