Abstract:
The present disclosure provides a substrate structure for a micro electro mechanical system (MEMS) device. The substrate structure includes a cap and a micro electro mechanical system (MEMS) substrate. The cap has a cavity, and the MEMS substrate is disposed on the cap. The MEMS substrate has a plurality of through holes exposing the cavity, and an aspect ratio of the through hole is greater than 30.
Abstract:
In described examples, a MEMS device is formed by forming a sacrificial layer over a substrate and forming a first metal layer over the sacrificial layer. Subsequently, the first metal layer is exposed to an oxidizing ambient which oxidizes a surface layer of the first metal layer where exposed to the oxidizing ambient, to form a native oxide layer of the first metal layer. A second metal layer is subsequently formed over the native oxide layer of the first metal layer. The sacrificial layer is subsequently removed, forming a released metal structure.
Abstract:
A hollow structure is manufactured by preparing a lower structure which includes a concave portion, depositing a sacrifice film composed of an organic film on the lower structure by a vapor deposition polymerization method to bury the concave portion with the sacrifice film, removing an unnecessary portion of the sacrifice film, forming an upper structure on the sacrifice film with the unnecessary portion removed, and forming an air gap between the lower structure and the upper structure by removing the sacrifice film.
Abstract:
The present invention generally relates to a method for forming a MEMS device and a MEMS device formed by the method. When forming the MEMS device, sacrificial material is deposited around the switching element within the cavity body. The sacrificial material is eventually removed to free the switching element in the cavity. The switching element has a thin dielectric layer thereover to prevent etchant interaction with the conductive material of the switching element. During fabrication, the dielectric layer is deposited over the sacrificial material. To ensure good adhesion between the dielectric layer and the sacrificial material, a silicon rich silicon oxide layer is deposited onto the sacrificial material before depositing the dielectric layer thereon.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, providing the inorganic material film with an aperture, and etching away the sacrificial film pattern through the aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) forming a sacrificial film using a composition comprising a cresol novolac resin and a crosslinker, (B) exposing patternwise the film to first high-energy radiation, (C) developing, and (D) exposing the sacrificial film pattern to second high-energy radiation and heat treating for thereby forming crosslinks within the cresol novolac resin.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
Microelectronic substrate comprising at least: a support layer, a top layer comprising at least one semiconductor, a layer comprising at least one organic material able to be etched selectively with respect to the semiconductor of the top layer by using a dry etching, and disposed between the support layer and the top layer, and also comprising one or more portions of dielectric material the hardness of which is greater than that of the organic material, disposed in the layer of organic material, and the thickness of which is substantially equal to that of the layer of organic material.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, metrology structures and methods of manufacture are disclosed. The method includes forming one or metrology structure, during formation of a device in a chip area. The method further includes venting the one or more metrology structure after formation of the device.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.