Abstract:
A receptacle structure includes a housing structure, a terminal insulating board, a first terminal and a second terminal. The housing structure is configured to be mounted on a printed wiring board and to accommodate a plug. The terminal insulating board includes a top face and a bottom face that is opposite to the top face. The terminal insulating board is disposed inside the housing structure with the bottom face facing towards the printed wiring board. The first terminal is connected to the printed wiring board via the first rear connection part and to the terminal insulating board. The second terminal is connected to the printed wiring board via the first front connection part and to the terminal insulating board. The first front connection part has a width narrower than the first rear connection part and is connected to the printed wiring board away from the first rear connection part.
Abstract:
In a method of bonding a first bump on a surface of a first member and a second bump on a surface of a second member, a tip portion of the first bump is provided with a projection having a hardness greater than a hardness of each of the first and second bumps. The first and second members are positioned with respect to each other such that the first and second bumps face each other. The tip portion of the first bump is brought into contact with a tip portion of the second bump by sticking the projection into the tip portion of the second bump.
Abstract:
A reinforcing plate fixed to a connector main body is arranged on a bottom surface of the connector main body to come into surface contact with a surface of a substrate while a plurality of holes is provided on a surface, which contacts the substrate, of the reinforcing plate. When the reinforcing plate is soldered to the substrate, therefore, a solder wraps around not only a peripheral edge of the reinforcing plate but also an edge of each of the holes so that a soldering portion between the reinforcing plate and the substrate can be sufficiently ensured.
Abstract:
The present disclosure is directed at an apparatus for changing printed circuit board pad structure to increase solder volume and strength. The invention provides increased end row pad and lead size and utilizes a plurality of lead-to-pad and pad-to-lead conforming geometric structures to form a joint providing additional solder surface adhesion area.
Abstract:
A manufacturing method of a contact structure includes first providing a substrate on which a contact pad has already been formed. Afterwards, a polymer bump is formed on the contact pad. Next, a conductive layer is formed on the polymer bump. The conductive layer covers the polymer bump and extends to the outside of the polymer bump. The portion of the conductive layer extending to the outside of the polymer bump serves as a test pad.
Abstract:
A solder joint structure include: a first terminal portion including a plurality of first terminal conductors adjacent to each other; a second terminal portion arranged opposite to the first terminal portion and including a plurality of second terminal conductors which are joined to the first terminal conductors; solders electrically connecting the first terminal conductors and the second terminal conductors; and member for suppressing flow of the solders.
Abstract:
Provided are an embedded capacitor, an embedded capacitor sheet using the embedded capacitor, and a method of manufacturing the same that may increase a surface area to thereby increase a capacity for each unit area and may provide an embedded capacitor in a sheet to thereby readily lay the embedded capacitor on an embedded printed circuit board. The embedded capacitor may include: a common electrode member 11 including a plurality of grooves 11a; a sealing dielectric layer 12 being formed by sealing a nano dielectric powder with a high dielectric constant in the plurality of grooves 11a formed in the common electrode member 11; a buffer dielectric layer 13 sealing and smoothing an uneven portion of the sealing dielectric layer 12 by applying a paste or a slurry including epoxy of 20 Vol % through 80 Vol % and dielectric powder of 20 Vol % through 80 Vol % with respect to the sealing dielectric layer 12; and an individual electrode member 14 being formed on the buffer dielectric layer 13.
Abstract:
A method and a surface mount technology (SMT) pad structure are provided for implementing enhanced solder joint robustness. The SMT pad structure includes a base SMT pad. The base SMT pad receives a connector for soldering to the SMT pad structure. A standoff structure having a selected geometry is defined on the base SMT pad to increase thickness of the solder joint for the connector.
Abstract:
A method for mounting a chip component includes the steps of: flattening a solder deposit adhering onto a land terminal of a circuit board; forming grooves on the solder deposit simultaneously with or after flattening the solder deposit; coating the solder deposit with a flux; and placing a chip component on the solder deposit with the flux interposed therebetween.
Abstract:
In accordance with the present invention, a light-emitting element mounting board is provided including an enamel layer which covers the surface of a core metal, wherein reflective cup portions for mounting light-emitting elements are provided on one face of the board, and wherein a heat radiating part is formed by at least partially removing the enamel layer on the other face of the board, and exposing the core metal. Further, a light-emitting element module including light-emitting elements mounted thereon, a lighting device including the light-emitting element, a display device, and traffic signal equipment are provided.