Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A scanning device includes a substrate, which is etched to define an array of two or more parallel rotating members and a gimbal surrounding the rotating members. First hinges connect the gimbal to the substrate and defining a first axis of rotation, about which the gimbal rotates relative to the substrate. Second hinges connect the rotating members to the support and defining respective second, mutually-parallel axes of rotation of the rotating members relative to the support, which are not parallel to the first axis.
Abstract:
A MEMS device, a method of making a MEMS device and a system of a MEMS device are shown. In one embodiment, a MEMS device includes a first polymer layer, a MEMS substrate disposed on the first polymer layer and a MEMS structure supported by the MEMS substrate. The MEMS device further includes a first opening disposed in the MEMS substrate and a second opening disposed in the first polymer layer.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
The present disclosure relates to micro-electromechanical system (MEMS) package that uses polysilicon inter-tier connections to provide for a low parasitic capacitance in MEM device signals, and a method of formation. In some embodiments, the MEMS package has a CMOS substrate with one or more semiconductor devices arranged within a semiconductor body. A MEMS substrate having an ambulatory element is connected to the CMOS substrate by a conductive bonding structure. The conductive bonding structure is arranged on a front-side of the MEMS substrate at a location laterally offset from the ambulatory element. One or more polysilicon vias extend through the conductive MEMS substrate to the bonding structure. The one or more polysilicon vias are configured to electrically couple the MEMS substrate to the CMOS substrate. By connecting the MEMS substrate to the CMOS substrate using the polysilicon vias, the parasitic capacitance and form factor of the MEMS package are reduced.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
Embodiments herein provide for a self-destructing chip including at least a first die and a second die. The first die includes an electronic circuit, and the second die is composed of one or more polymers that disintegrates at a first temperature. The second die defines a plurality of chambers, wherein a first subset of the chambers contain a material that reacts with oxygen in an exothermic manner. A second subset of the chambers contain an etchant to etch materials of the first die. In response to a trigger event, the electronic circuit is configured to expose the material in the first subset of chambers to oxygen in order to heat the second die to at least the first temperature, and is configured to release the etchant from the second subset of the chambers to etch the first die.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
A method of forming a capacitive micro-electro-mechanical system (MEMS) sensor device includes at least one capacitive MEMS sensor element with at least one capacitive MEMS sensor cell. A patterned dielectric layer including a thick dielectric region and a thin dielectric region is formed on a top side of a first substrate. A second substrate is bonded to the thick dielectric region to provide at least one sealed micro-electro-mechanical system (MEMS) cavity. The second substrate is thinned to reduce a thickness of said second substrate to provide a membrane layer. Vias are etched through the membrane layer and said thick dielectric region extending into the first substrate to form embedded vias. A dielectric liner which lines the embedded vias is formed within the first substrate. The embedded vias are filed with electrically conductive TSV filler material to form a plurality of through-substrate vias (TSVs), said plurality of TSVs extending to at least a top of said membrane layer. A patterned metal cap layer including metal caps is formed on top of said plurality of TSVs. Trenches are etched through regions of the membrane layer for releasing a first portion of the membrane layer over said MEMS cavity to provide a MEMS electrode and to define a fixed electrode. A third substrate including an inner cavity and outer protruding portions framing said inner cavity is bonded to the thick dielectric. The protruding portions are bonded to the thick dielectric region and, together with said first substrate vacuum, seals said MEMS electrode. The plurality of TSVs on a bottom side of said first substrate are exposed.