Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Abstract:
A method for creating an electron lens includes the steps of applying a polymer layer on an emitter surface of an electron emitter and then curing the polymer layer to reduce volatile content.
Abstract:
An object of the present invention is to suppress measurement errors caused by the fact that the shrink amount due to scan of an electron beam differs pattern by pattern. To accomplish this object, according to the invention, functions indicative of a process of change of pattern dimension when the electron beam is irradiated on a sample are prepared in respect of the kinds of sample patterns, and dimension values of a particular pattern measured by scanning the electron beam on the particular pattern are fitted to a function prepared for the particular pattern to calculate a dimension of the particular pattern before it changes.
Abstract:
An electron emission device having various functional electrodes in addition to the electrodes serving to emit electrons includes: first and second substrates facing each other, and cathode and gate electrodes arranged on the first substrate within an effective electron emission area and including an insulating layer interposed therebetween. The electron emission regions are electrically connected to the cathode electrodes. At least one dummy electrode is arranged external to the effective electron emission area. At least one anode electrode is arranged on the second substrate. Phosphor layers are arranged on one surface of the anode electrode.
Abstract:
An electron gun includes an electron emission cathode, a control electrode, and an extractor and the electron emission cathode is made of rare earth hexaboride. A tip of the electron emission cathode is located between the control electrode and the extractor, and the electron emission surface of the electron emission cathode is spherical or flat.
Abstract:
A method for creating an electron lens includes the steps of applying a polymer layer on an emitter surface of an electron emitter and then curing the polymer layer to reduce volatile content.
Abstract:
A thermoelectron generating source including a facial main cathode for emitting thermoelectrons by being heated from behind, a filament for heating the main cathode from behind to emit the thermoelectrons, an extraction electrode for extracting the thermoelectrons emitted from the main cathode under an electric field, the extraction electrode being provided near the front of the main cathode, and two deflecting electrodes and disposed on the left and right sides near the front of the extraction electrode to carry the extraction electrode. The potentials of the two deflecting electrodes are kept in a relation VL>VRnull0, where the potential of one deflecting electrode is VL and the potential of the other deflecting electrode is VR.
Abstract:
An electron gun as for a cathode ray tube includes a plurality of electrodes biased at different potentials to electrostatically shape and focus the one or more electron beams produced thereby. A dynamic focus grid is driven by a substantial ac voltage signal at the horizontal line rate, which signal is undesirably coupled through parasitic capacitance to an intermediate grid located between the dynamic focus grid and the gun anode. A resistive biasing network includes a high value resistance to divide the anode potential to develop bias potential for the intermediate grid and a capacitance to ac couple the intermediate grid to ground potential. The resistance is formed in a single layer ceramic circuit and the capacitance is formed on the single layer ceramic circuit or on the tube neck. The ceramic circuit may be located in the tube neck on or with the electron gun.
Abstract:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.