Abstract:
A semiconductor sensor having a thin-film structure body, in which thin-film structure is prevented from bending due to the internal stress distribution in the thickness direction, is disclosed. A silicon-oxide film is formed as a sacrificial layer on a silicon substrate, and a polycrystalline-silicon thin film is formed on the silicon-oxide film. Thereafter, phosphorus (P) is ion-implanted in the surface of the polycrystalline-silicon thin film, and thereby the surface state of the polycrystalline-silicon thin film is modified. A portion of distribution of stress existing in the thickness direction of the polycrystalline-silicon thin film is changed by this modification, and stress distribution is adjusted. By removal of the silicon-oxide film, a movable member of the polycrystalline-silicon thin film is disposed above the silicon substrate with a gap interposed therebetween.
Abstract:
A method of forming a microphone device includes: forming a through-hole in a substrate wafer; providing a second wafer; bonding the second wafer to the substrate wafer; and forming a top electrode over a first surface of a single-crystal piezoelectric film of the second wafer. The second wafer may include the single-crystal piezoelectric film. The single-crystal piezoelectric film may have a first surface and an opposing second surface. The second wafer may further include a bottom electrode arranged adjacent to the second surface, and a support member over the single-crystal piezoelectric film. The through-hole in substrate wafer may be at least substantially aligned with at least one of the top electrode and the bottom electrode.
Abstract:
A method for producing at least one deformable membrane micropump including a first substrate and a second substrate assembled together, the first substrate including at least one cavity and the second substrate including at least one deformable membrane arranged facing the cavity. In the method: the cavity is produced in the first substrate; then the first and second substrates are assembled together; then the deformable membrane is produced in the second substrate.
Abstract:
Embodiments of the present disclosure can include a method for frequency trimming a microelectromechanical resonator, the resonator comprising a substrate and a plurality of loading elements layered on a surface of the substrate, the method comprising: selecting a first loading element of the plurality of loading elements, the first loading element being layered on a surface of a region of interest of the substrate; heating the first loading element and substrate within the region of interest to a predetermined temperature using an optical energy source, causing the first loading element to diffuse into the substrate; and cooling the region of interest to form a eutectic composition layer bonding the loading element and the substrate within the region of interest.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A semiconductor pressure sensor includes a fixed electrode placed at a principal surface of a semiconductor substrate, and a diaphragm movable through an air gap in a thickness direction of the semiconductor substrate at least in an area where the diaphragm is opposed to the fixed electrode. The diaphragm includes: a movable electrode; a first insulation film placed closer to the air gap with respect to the movable electrode; a second insulation film placed opposite to the air gap with respect to the movable electrode, the second insulation film being of a same film type as the first insulation film; and a shield film that sandwiches the second insulation film with the movable electrode.
Abstract:
According to one embodiment, a method of manufacturing a device is provided. A amorphous metal layer is formed. A metal layer containing metal and having a crystal plane oriented to a predetermined plane is formed on the amorphous metal layer. A first layer containing semiconductor including silicon, and metal identical to the metal contained in the metal layer is formed on the metal layer. The first layer is changed to a second layer containing a compound of the semiconductor and the metal, the compound having a crystal plane oriented to the predetermined plane. A third layer containing polycrystalline silicon-germanium and having a crystal plane oriented to the predetermined plane is formed on the second layer.
Abstract:
A microelectronic device contains a high performance silicon nitride layer which is stoichiometric within 2 atomic percent, has a low stress of 600 MPa to 1000 MPa, and has a low hydrogen content, less than 5 atomic percent, formed by an LPCVD process. The LPCVD process uses ammonia and dichlorosilane gases in a ratio of 4 to 6, at a pressure of 150 millitorr to 250 millitorr, and at a temperature of 800° C. to 820° C.