Composite cavity and forming method thereof

    公开(公告)号:US10035701B2

    公开(公告)日:2018-07-31

    申请号:US15305799

    申请日:2014-11-05

    Abstract: There is provided a method for forming a composite cavity and a composite cavity formed using the method. The method comprises the following steps: providing a silicon substrate (101); forming an oxide layer on the front side thereof; patterning the oxide layer to form one or more grooves (103), the position of the groove (103) corresponding to the position of small cavity (109) to be formed; providing a bonding wafer (104), which is bonded to the patterned oxide layer to form one or more closed micro-cavity structures (105) between the silicon substrate (101) and the bonding wafer (104); forming a protective film (106) over the bonding wafer (104) and forming a masking layer (107) on the back side of the silicon substrate (101); patterning the masking layer (107), the pattern of the masking layer (107) corresponding to the position of a large cavity (108) to be formed; using the masking layer (107) as a mask, etching the silicon substrate (101) from the back side until the oxide layer at the front side thereof to form the large cavity (108) in the silicon substrate (101); and using the masking layer (107) and the oxide layer as a mask, etching the bonding wafer (104) from the back side through the silicon substrate (101) until the protective film (106) thereover to form one or more small cavities (109) in the bonding wafer (104). The uniformity of thickness of the semiconductor medium layer where the small cavity (109) in the composite cavity is located is well controlled by the present invention.

    MEMS-based method for manufacturing sensor

    公开(公告)号:US09975766B2

    公开(公告)日:2018-05-22

    申请号:US15312146

    申请日:2015-05-05

    CPC classification number: B81C1/00619 B81C1/00 B81C2201/0133 B81C2201/0142

    Abstract: An MEMS-based method for manufacturing a sensor comprises the steps of: forming a shallow channel (120) and a support beam (140) on a front surface of a substrate (100); forming a first epitaxial layer (200) on the front surface of the substrate (100) to seal the shallow channel (120); forming a suspended mesh structure (160) below the first epitaxial layer (200); and forming a deep channel (180) at a position on a back surface of the substrate (100) corresponding to the shallow channel (120), so that the shallow channel (120) is in communication with the deep channel (180). In the Method of manufacturing a MEMS-based sensor, when a shallow channel is formed on a front surface, a support beam of a mass block is formed, so the etching of a channel is easier to control, the process is more precise, and the uniformity and the homogeneity of the formed support beam are better.

    FABRICATION PROCESS FOR A SYMMETRICAL MEMS ACCELEROMETER

    公开(公告)号:US20170336437A1

    公开(公告)日:2017-11-23

    申请号:US15659963

    申请日:2017-07-26

    Abstract: A process for fabricating a symmetrical MEMS accelerometer. A pair of half parts is fabricated by, for each half part: (i) forming a plurality of resilient beams, first connecting parts, second connecting parts, and a plurality of comb structures, by etching a plurality of holes on a bottom surface of a first silicon wafer; (ii) etching a plurality of hollowed parts on a top surface of a second silicon wafer; (iii) forming a silicon dioxide layer on the top and bottom surface of the second silicon wafer; (iv) bonding the bottom surface of the first silicon wafer with the top surface of the second silicon wafer; (v) depositing a layer of silicon nitride on the bottom surface of the second silicon wafer, and removing parts of the silicon nitride layer and silicon dioxide layer on the bottom surface of the second silicon wafer; (vii) deep etching the exposed parts of the bottom surface of the second silicon wafer to the silicon dioxide layer located on the top surface of the second silicon wafer, and reducing the thickness of the first silicon wafer; and (viii) removing the silicon nitride layer, and etching the silicon dioxide to form the mass. The two half parts are then bonded along their bottom surface. The device is deep etched to form a movable accelerometer. A bottom cap is fabricated by hollowing out the corresponding area, and depositing metal as electrodes. The accelerometer is bonded with the bottom cap. Metal is deposited on the first silicon wafer to form electrodes.

Patent Agency Ranking