Abstract:
본 발명은 다층의 도핑층을 갖는 소노스(SONOS) 메모리 셀을 이용한 낸드(NAND) 플래시 메모리 어레이 및 그 동작방법에 관한 것이다. 종래 소노스 메모리 셀의 구조와 달리 본 발명에서 사용되는 메모리 셀은 액티브 영역에 다층의 도핑층을 적절히 형성함으로써, 소스/드레인 영역과 PN 접합을 이루는 부분에서 전자가 밴드간 터널링이 되도록 유도하고, 상기 전자를 소정의 역 바이어스 상태에서 가속시켜 애벌런치 현상을 유도하여 이 때 생성된 홀을 각 소노스 메모리 셀의 다중 유전층으로 주입시키는 방식으로 프로그램하고, 이레이즈시에는 FN 터널링으로 채널에 있는 전자를 상기 각 셀의 다중 유전층으로 주입시키는 방식으로 낸드 플래시 메모리 어레이를 동작하는 방법을 제공한다. SONOS, 플래시 메모리, 터널링, 애벌런치, NAND
Abstract:
본 발명은 액티브 영역에 다층의 도핑층을 갖는 소노스(SONOS) 형태의 플래시 메모리 셀의 구조 및 그 제조방법과 동작방법에 관한 것이다. 종래 소노스 메모리 셀의 구조와 달리 본 발명은 액티브 영역에 다층의 도핑층을 적절히 형성함으로써, 소스/드레인 영역과 PN 접합을 이루는 부분에서 전자가 밴드간 터널링이 되도록 유도하고, 상기 전자를 소정의 역 바이어스 상태에서 가속시켜 애벌런치 현상을 유도하여 이 때 생성된 홀을 소노스 메모리 셀의 다중 유전층으로 주입시키는 방식으로 프로그램하고, 이레이즈시에는 FN 터널링으로 채널에 있는 전자를 상기 다중 유전층으로 주입시키는 방식으로 셀을 동작하는 방법을 제공한다. SONOS, 플래시 메모리, 터널링, 애벌런치
Abstract:
본 발명은 유기 박막 트랜지스터 및 그의 제조방법에 관한 것으로, 기존의 유기 박막 트랜지스터를 제조 공정 중에, 소스와 드레인 전극을 표면 처리하는 물질과 게이트 절연막을 표면 처리하는 OTS(octadecyl trichlorosilane)를 동시에 사용할 경우에 소자의 특성이 저하되는 문제점과 각기 분리하여 표면 처리할 경우 복잡한 공정이 수행되는 문제점을 본 발명에서는 모노클로러벤젠(monochlorobenzen)에 의해 희석시킨 PMMA(poly-(methyl methacrylate))용액을 소스와 드레인 전극 및 게이트 절연막에 한 번의 스핀 코팅한 후, 유기 반도체 물질을 증착시킴으로써 해결한다. 따라서, 본 발명은 소스 및 드레인 전극과 게이트 절연막에 그레인 사이즈가 크고, 잘 성장되는 유기 반도체 물질막을 형성할 수 있게 되어서, 소자의 캐리어 이동도를 향상시킬 수 있고 제조 공정 시간을 단축시킬 수 있는 효과가 있다.
Abstract:
PURPOSE: A method for driving the column of a pixel array of a micro display and a driving circuit for the same are provided to drastically reduce the occupied area by removing the latches in the column of a conventional column driving circuit. CONSTITUTION: An apparatus for driving the column of a pixel array of a micro display includes a shift register, a digital-to-analog converter(DAC), a DAC operation control circuit and a column driving switch. The shift register generates a digital signal to select each column of pixel array. The DAC converts the digital input signal to an analog signal to drive each column of pixel array in response to the output signal of the shift register. The DAC operation control circuit connects its input terminals to the first output terminal of a specific block and the first output terminal of the neighboring block to operate the DAC at the signal corresponding to the specific block. And, the column driving switch is connected to the output terminals of the shift register and the output terminals of the DAC to control the driving of each column of the pixel array.
Abstract:
The present invention relates to a method for fabricating semiconductor device with negative differential conductance or transconductance. According to the present invention, a fabrication process thereof can be simplified by using an SOI (Silicon-On-Insulator) substrate, and a tunneling device exhibiting the negative differential conductance or transconductance at room temperature can be implemented by using P+-N+ junction barriers as tunneling barriers and implanting impurity ions into a channel region so that their density is higher than the effective density of states where electrons or holes can exist thereon. Since the semiconductor device with the negative differential conductance or transconductance can be also be implemented even at room temperature, there is an advantage in that the present invention can be applied to an SRAM or a logic device using a device which can be turned on/off in response to a specific voltage.Further, according to the fabrication method of the present invention. miniaturization of the device can be easily made, and the reproducibility and the mass productivity of the process can be enhanced. Simultaneously, the gate, the source/drain and the channel regions are formed by the self-aligned process. Thus, there is another advantage in that a gate pitch can also be reduced.In addition, there is a further advantage in that the semiconductor device fabricated according to the present invention has the characteristic of a single electron transistor by using the channel region as the quantum dot and the two P+-N+ junctions as the tunneling barriers.
Abstract:
PURPOSE: A method for manufacturing an FET(Field Effect Transistor) having an LDD(Lightly Doped Drain) is provided to be capable of improving the reproductivity of a process, automating the process, and preventing contamination. CONSTITUTION: After forming the first oxide layer at the upper portion of an isolating layer, the first oxide sidewalls(45a,45b) are formed at both sides of a gate(43a) by carrying out the first dry etching process at the first oxide layer. After forming a nitride layer at the upper portion of the resultant structure, nitride sidewalls are formed at each outer portion of the first oxide sidewalls by carrying out the second dry etching process at the nitride layer. Then, a source and drain region(48a,48b) are formed at a semiconductor substrate(41) by implanting ions. The nitride sidewalls are removed by carrying out the third dry etching process for remaining the first oxide sidewalls alone. At this time, the insulating layer is selectively etched.
Abstract:
PURPOSE: A FET(Field Effect Transistor) and a method for manufacturing the same are provided to be capable of easily forming an ultra-small channel, reducing the delay and resistance of a gate for improving the operation of the FET, and operating a source/drain with low resistance. CONSTITUTION: A FET is provided with an SOI(Silicon On Insulator) substrate(10), a source and drain region(3a,3b) spaced apart from each other at the silicon layer of the SOI substrate, and a pair of first insulating sidewalls(14a,14b) formed at the upper portion of the silicon layer between the source/drain region. The FET further includes a gate electrode(16'') formed at the predetermined upper portion of the silicon layer, a gate isolating layer(15) located between the gate electrode and the resultant structure, the second sidewalls(17a,17b) formed at both sides of the gate electrode, and silicide layers(18,19,20) selectively formed at the upper portion of the resultant structure.
Abstract:
PURPOSE: A NOR flash memory array of a vertical channel embedding a fin separation layer is provided to prevent a leakage current between bit lines by arranging the pin separation layer between the silicon fins. CONSTITUTION: A NOR flash memory array includes a silicon substrate(10), a charge storage(60), and a gate line(70). The silicon substrate has the silicon fins(12a,12b). The charge storage is arranged on the silicon fins. The gate lines are positioned on the charge storage and cross the silicon fins. The NOR flash memory array includes a fin separation layer(11). The fin separation layer is arranged between the silicon fins.
Abstract:
PURPOSE: An AND type flash memory array of a vertical laminate structure, a manufacturing method thereof, and an operating method are provided to perform high integration by forming a local bit line and a local source line in a silicon pin of each layer. CONSTITUTION: An AND type flash memory array of a vertical laminate structure includes one or more bit lines, a local bit line, a memory cell, a local source line, a common source line, a drain selecting line, a source selecting line, and word lines. The local bit line is connected to each bit line(98a,98b,98c) by a first selecting transistor. A plurality of memory cells are parallel connected by using the local bit line as a common drain line. The local source line is commonly connected to a source of each memory cell. The common source line is vertically arranged with each bit line in which the local source line is connected by a second selecting transistor. The drain selecting line and the source selecting line are connected to a gate of the first selecting transistor and a gate of the second selecting transistor. The word lines are connected to a gate of each memory cell.
Abstract:
PURPOSE: A dual gate single electron transistor having a recess channel and a manufacturing method thereof are provided to reduce whole capacitance of a quantum dot by controlling a junction depth of source/drain. CONSTITUTION: A dual gate single electron transistor having a recess channel includes a substrate, a side gate, a control gate, a source region, a drain region, and a recess channel region. The substrate has a groove shape of a fixed depth. Two side gates(70) are formed in both sides of the groove. A first insulation film(42) is positioned between the two side gates. The control gate(81) is formed on each side gate. A second insulation film(43) is positioned between the control gates. The source region(91) and the drain region(92) are formed on the substrate. The groove is positioned between the source region and the drain region. The recess channel region surrounds the groove in between the source region and the drain region.