Abstract:
A lithographic apparatus is disclosed. The apparatus includes an illumination system that provides a beam of radiation, and a support structure that supports a patterning structure. The patterning structure is configured to impart the beam of radiation with a pattern in its cross-section. The apparatus also includes a substrate support that supports a substrate, a projection system that projects the patterned beam onto a target portion of the substrate, and a debris-mitigation system that mitigates debris particles which are formed during use of at least a part of the lithographic apparatus. The debris-mitigation system is arranged to apply a magnetic field so that at least charged debris particles are mitigated.
Abstract:
A radiation sensor for use with a lithographic apparatus is disclosed, the radiation sensor comprising a radiation-sensitive material which converts incident radiation of wavelength lambda1 into secondary radiation; and sensing means capable of detecting the secondary radiation emerging from said layer.
Abstract:
A method to clean optical elements of an apparatus, the apparatus being configured to project a beam of radiation onto a target portion of a substrate, the apparatus comprising a plurality of optical elements arranged in sequence in the path of the radiation beam, wherein the cleaning method comprises: cleaning one or more second optical elements of the sequence, which receive one or more relatively low second radiation doses during operation of the apparatus, utilizing cumulatively shorter cleaning periods than one or more first optical elements of the sequence that receive one or more first radiation doses during operation of the apparatus, a second radiation dose being lower than each relatively high first radiation dose.
Abstract:
A lithographic apparatus includes a radiation source and an object with a first surface which is configured to retain metal contaminants. This surface has the function of a getter. The first surface is arranged substantially outside the region traversed by the radiation beam generated by the radiation source during lithographic processing. The first surface may further be used to retain volatile contaminants generated in a cleaning method.
Abstract:
A lithographic apparatus is disclosed. The lithographic apparatus includes an illumination system for providing a beam of radiation on a flat article to be placed in a beam path of the beam of radiation, and an article handler for handling the article during placement or removal of the article. The article handler includes an electrode and a dielectric layer in order to form an electrostatic clamp for electrostatically clamping the article.
Abstract:
A lithographic apparatus that includes an illumination system configured to condition a radiation beam. The illumination system includes a plurality of optical components. The apparatus also includes a support constructed to support a patterning device. The patterning device is capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The apparatus further includes a substrate table constructed to hold a substrate, and a projection system configured to project the patterned radiation beam onto a target portion of the substrate. The projection system includes a plurality of optical components. The apparatus also includes a contamination measurement unit for measuring contamination of a surface of at least one of the optical components. The contamination measurement unit is provided with a radiation sensor constructed and arranged to measure an optical characteristic of radiation received from the surface.
Abstract:
The invention relates to an optical arrangement, in particular a projection exposure apparatus (1) for EUV lithography, comprising: a housing (2) that encloses an interior space (15); at least one, in particular reflective, optical element (4 to 10, 12, 14.1 to 14.6) that is arranged in the housing (2); at least one vacuum generating unit (3) for generating a vacuum in the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1 to 18.10) that is arranged in the interior space (15) of the housing (2) and that encloses at least the optical surface (17, 17.1, 17.2) of the optical element (4 to 10, 12, 14.1 to 14.5), wherein a contamination reduction unit is associated with the vacuum housing (18.1 to 18.10), which contamination reduction unit reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
Abstract:
A lithographic apparatus is disclosed. The apparatus includes a source (5) for supplying hydrogen radicals (1), a guide (2) for use in conjunction with the source, for directing hydrogen radicals to an application surface (4) to be targeted by the hydrogen radicals. The guide is provided with a coating (8) having a hydrogen radical recombination constant of less than 0.2. In this way, the radicals can be transported with reduced losses and are able to better interact with remaining contaminants on application surfaces, such as mirror surfaces.
Abstract:
In a lithographic apparatus a beam of radiation passes along a beam path to a substrate, for applying patterned illumination to the substrate. An exhangeable aperture screen (22A) is inserted in the beam path to partially block out the beam from a remainder of the path onto the substrate. A test surface (28) is provided on the aperture screen, so that the test surface receives a part of the beam that is not passed along the remainder of the beam path. The test surface is made of a material that is sensitive, under influence of radiation from the beam, to chemical alterations that also affect the optical element (24) under influence of radiation from the beam. The test surface is later analyzed for chemical alterations after exposure to the beam.