Procedimiento para la preparación de 4-hidroxi-4-metil-tetrahidropiranos sustituidos en posición 2 en una cascada de reactores

    公开(公告)号:ES2675360T3

    公开(公告)日:2018-07-10

    申请号:ES14720115

    申请日:2014-04-28

    Applicant: BASF SE

    Abstract: Procedimiento para la preparación de 4-hidroxi-4-metil-tetrahidropiranos sustituidos en posición 2 de la fórmula (I)**Fórmula** en la que R1 representa alquilo C1-C12 de cadena recta o ramificada, alquenilo C2-C12 de cadena recta o ramificada, cicloalquilo no sustituido o sustituido con alquilo C1-C12 y/o sustituido con alcoxi C1-C12, con en total de 3 a 20 átomos de carbono o arilo no sustituido o sustituido con alquilo C1-C12 y/o sustituido con alcoxi C1-C12 con en total de 6 a 20 átomos de carbono que comprende una reacción de 3-metilbut-3-en-1-ol de la fórmula (III)**Fórmula** con un aldehído de la fórmula (IV) R1-CHO (IV) en donde R1 en la fórmula (IV) tiene el significado indicado anteriormente, en presencia de un catalizador ácido, caracterizado porque la reacción ocurre en una disposición de n reactores conectados en serie, en donde n representa un número natural de al menos 2, en donde entre el primer y el último reactores en dirección de la corriente se toma una corriente parcial y se inyecta en un reactor situado corriente arriba de la posición de extracción.

    PROCESS FOR PREPARING FORMIC ACID BY REACTING CARBON DIOXIDE WITH HYDROGEN

    公开(公告)号:CA2851175A1

    公开(公告)日:2013-04-11

    申请号:CA2851175

    申请日:2012-10-02

    Applicant: BASF SE

    Abstract: The invention relates to a method for producing formic acid, comprising the following steps: (a) reacting, in a homogeneously catalyzed manner, a reaction mixture (Rg) containing carbon dioxide, hydrogen, at least one polar solvent and at least one tertiary amine in the presence of at least one coordination catalyst in a hydrogenation reactor in order to obtain a two-phase hydrogenation mixture (H) containing an upper phase (O1), which contains the at least one coordination catalyst and the at least one tertiary amine (A1), and a lower phase (U1), which contains the at least one polar solvent, residues of the at least one coordination catalyst, and at least one formic acid/amine adduct; (b) processing the hydrogenation mixture (H) obtained in step (a) according to one of the following steps: (b1) phase-separating the hydrogenation mixture (H) obtained in step (a) in a first phase-separating device into the upper phase (O1) and the lower phase (U1), or (b2) extracting the at least one coordination catalyst from the hydrogenation mixture (H) obtained in step (a) in an extraction unit with an extracting agent containing the at least one tertiary amine (A1) in order to obtain a raffinate (R1) containing the at least one formic acid/amine adduct (A2) and the at least one polar solvent and an extract (E1) containing the at least one tertiary amine (A1) and the at least one coordination catalyst, or (b3) phase-separating the hydrogenation mixture (H) obtained in step (a) in a first phase-separating device into the upper phase (O1) and the lower phase (U1) and extracting the residues of the at least one coordination catalyst from the lower phase (U1) in an extraction unit by means of an extracting agent containing the at least one tertiary amine (A1) in order to obtain a raffinate (R2) containing the at least one formic acid/amine adduct (A2) and the at least one polar solvent and an extract (E2) containing the at least one tertiary amine (A1) and the residues of the at least one coordination catalyst; (c) separating the at least one polar solvent from the lower phase (U1), from the raffinate (R1), or from the raffinate (R2) in a first distillation device in order to obtain a distillate (D1) containing the at least one polar solvent, which is fed back into the hydrogenation reactor in step (a), and a two-phase bottom mixture (S1) containing an upper phase (O2), which contains the at least one tertiary amine (A1), and a lower phase (U2), which contains the at least one formic acid/amine adduct (A2); (e) cleaving the at least one formic acid/amine adduct (A2) contained in the bottom mixture (S1) or optionally in the lower phase (U2) in a thermal cleaving unit in order to obtain the at least one tertiary amine (A1), which is fed back to the hydrogenation reactor in step (a), and formic acid, which is discharged from the thermal cleaving unit, wherein carbon monoxide is added to the lower phase (U1), the raffinate (R1), or the raffinate (R2) directly before and/or during step (c) and/or carbon monoxide is added to the bottom mixture (S1) or optionally the bottom phase (U2) directly before and/or during step (e).

    28.
    发明专利
    未知

    公开(公告)号:DE50311061D1

    公开(公告)日:2009-02-26

    申请号:DE50311061

    申请日:2003-09-12

    Applicant: BASF SE

    Abstract: A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound. A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound of formula (1). Q = bridging group of formula (2); A1, A2 = O, S, SiRaRb, NRc or CRdRe; Ra-Rc = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; Rd, Re = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl or two Rd groups and/or two Re groups form an intermolecular bridging group D; D = bivalent bridging group of formula (3)-(6); R9,R10 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, carboxyl, carboxylate or cyano or together form a 3-4C alkylene bridge; R11-R14 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, SO3H, sulfonate, NE1E2, alkylene-NE1E2E3+X-, acyl or nitro; C = 0 or 1; Y = chemical bond; RI-RVI = H, alky, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; COORf, COO-M+, SO3Rf, SO3-M+, NE1E2, NE1E2E3+X-, alkylene-NE1E2E3+X-, ORf, SRf, (CHRgCH2O)xRf, (CH2N(E1))xRf, (CH2CH2N(E1))xRf, halo, trifluoromethyl, nitro, acyl or cyano or 2 neighboring groups, together with two neighboring C atoms of the benzene ring to which they are bonded form a condensed ring system of 1-3 further rings; Rf, E1-E3 = H, alkyl, cycloalkyl or aryl; R9 = H, methyl or ethyl; M+ = cation, X-=anion; x = 1-120; a, b = 0 or 1; Pn = P, As or Sb; R1-R4 = heteroaryl, heteroaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or NE1E2 with the proviso that is R1 and R3 are bonded via the N atom to the pnicogen atom bonded pyrrole ring or R1 with R2 and/or R3 together with R4 form a divalent group E of formula Py-I-W or R1 and R2 and/or R3 and R4 form a bispyrrole group of formula Py-I-Py; Py = pyrrole group that is bonded via its N atom to Pn; I = chemical bond, O, S, SiRaRb, NRc, optionally substituted 1-10C alkylene or CRhCRi; W = cycloalkyl, cycloalkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy; Rh and Ri = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl

    29.
    发明专利
    未知

    公开(公告)号:AT420065T

    公开(公告)日:2009-01-15

    申请号:AT03748014

    申请日:2003-09-12

    Applicant: BASF SE

    Abstract: A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound. A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound of formula (1). Q = bridging group of formula (2); A1, A2 = O, S, SiRaRb, NRc or CRdRe; Ra-Rc = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; Rd, Re = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl or two Rd groups and/or two Re groups form an intermolecular bridging group D; D = bivalent bridging group of formula (3)-(6); R9,R10 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, carboxyl, carboxylate or cyano or together form a 3-4C alkylene bridge; R11-R14 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, SO3H, sulfonate, NE1E2, alkylene-NE1E2E3+X-, acyl or nitro; C = 0 or 1; Y = chemical bond; RI-RVI = H, alky, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; COORf, COO-M+, SO3Rf, SO3-M+, NE1E2, NE1E2E3+X-, alkylene-NE1E2E3+X-, ORf, SRf, (CHRgCH2O)xRf, (CH2N(E1))xRf, (CH2CH2N(E1))xRf, halo, trifluoromethyl, nitro, acyl or cyano or 2 neighboring groups, together with two neighboring C atoms of the benzene ring to which they are bonded form a condensed ring system of 1-3 further rings; Rf, E1-E3 = H, alkyl, cycloalkyl or aryl; R9 = H, methyl or ethyl; M+ = cation, X-=anion; x = 1-120; a, b = 0 or 1; Pn = P, As or Sb; R1-R4 = heteroaryl, heteroaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or NE1E2 with the proviso that is R1 and R3 are bonded via the N atom to the pnicogen atom bonded pyrrole ring or R1 with R2 and/or R3 together with R4 form a divalent group E of formula Py-I-W or R1 and R2 and/or R3 and R4 form a bispyrrole group of formula Py-I-Py; Py = pyrrole group that is bonded via its N atom to Pn; I = chemical bond, O, S, SiRaRb, NRc, optionally substituted 1-10C alkylene or CRhCRi; W = cycloalkyl, cycloalkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy; Rh and Ri = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl

Patent Agency Ranking