Abstract:
The present invention relates to an integrated method for producing pulp and at least one organic liquid or liquefiable valuable material, in which a) a lignocellulosic starting material is prepared and subjected to disruption with an aqueous-alkaline treatment medium, b) from the disrupted material a cellulose-enriched fraction and a cellulose-depleted black liquor are isolated, c) the black liquor is subjected to a treatment with at least one organic liquid or liquefiable valuable material and at least one exhaust gas stream being obtained, d) at least one of the exhaust gas streams of step c) is recirculated to the method for producing pulp and utilized.
Abstract:
The invention relates to a method for producing 1,2-propandiol, wherein a flow containing glycerine, in particular a flow produced on an industrial scale during the production of biodiesel, is subjected to low-pressure hydrogenation.
Abstract:
The invention relates to a method for producing 1,2-propandiol, wherein a flow containing glycerine, in particular a flow produced on an industrial scale during the production of biodiesel, is subjected to hydrogenation in a two-step reactor cascade.
Abstract:
The invention relates to a method for producing cyclohexane by isomerizing a hydrocarbon mixture (KG1) containing methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. A flow (S1) originating from a steam cracking process is used as a starting material. The hydrocarbon mixture (KG1) is obtained from said stream (S1) in a device for removing aromatics. The hydrocarbon mixture has a reduced aromatic content in comparison with the flow (S1). (KG1) can also be (nearly) free of aromatics. In dependence on the type and amount of the aromatics remaining in the hydrocarbon mixture (KG1), in particular if benzene is present, a hydrogenation of (KG1) additionally can be performed before the isomerization. Furthermore, additional purification steps can optionally be performed before or after the isomerization or hydrogenation in dependence on the presence of other components of (KG1). Preferably high-purity cyclohexane (in accordance with specifications) is isolated from the hydrocarbon mixture (KG2) arising during the isomerization, wherein the specifications are given, for example, by the use of the cyclohexane for the production of caprolactam known to the person skilled in the art.
Abstract:
The invention relates to a method for producing 1,2-propandiol, wherein a flow containing glycerine, in particular a flow produced on an industrial scale during the production of biodiesel, is subjected to hydrogenation in an at least three-step reactor cascade.
Abstract:
The invention relates to a method for hydrocarbon conversion in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization, in particular an isomerization of methylcyclopentane (MCP) to form cyclohexane. Before the hydrocarbon conversion, a hydrogenation is performed. Preferably, benzene is hydrogenated to form cyclohexane. The cyclohexane arising in the hydrogenation and/or isomerization is preferably isolated from the method. In a preferred embodiment of the invention, low boilers, in particular C5-C6 alkanes such as cyclopentane or isohexanes, are removed by distillation from the hydrocarbon mixture used for the hydrocarbon conversion after the hydrogenation and before the hydrocarbon conversion.
Abstract:
The invention relates to a method for regenerating a supported hydrogenation catalyst containing ruthenium, wherein the catalyst is treated with steam and subsequently dried. The invention further relates to an integrated method for hydrogenating benzene to form cyclohexane in the presence of a supported catalyst containing ruthenium, comprising the catalyst regeneration steps in addition to the hydrogenation step.
Abstract:
The present invention relates to a method for producing 1,2-propanediol from glycerin, comprising at least the steps of: (A) providing a glycerin flow G1, (B) desulfurization of the glycerin flow G1 from step (A) by hydrogenating with hydrogen at a pressure of 50 300 bar in the presence of a catalyst in order to obtain a glycerin flow G2, and (C) hydrogenating the glycerin flow G2 from step (B) with hydrogen in the presence of a catalyst, in order to obtain 1,2-propanediol.
Abstract:
The present invention relates to a process for preparing 1,2-propanediol, in which a glycerol-containing stream, especially a stream obtained on the industrial scale in the production of biodiesel, is subjected to a hydrogenation in a two-stage reactor cascade.