Abstract:
A design structure (100, FIG. 1a) is provided for spacer fill structures (100 and 300) and, more particularly, spacer fill structures (100 and 300), a method of manufacturing and a design structure for reducing device variation is provided. The structure includes a plurality of dummy fill shapes (100) in different areas of a device which are configured such that gate perimeter to gate area ratio will result in a total perimeter density being uniform across a chip.
Abstract:
A photomask (100), method of designing, of fabricating, of designing, a method of inspecting and a system for designing the photomask (100). The photomask (100), includes: a cell region (110), the cell region (110) comprising one or more chip regions (155 A, 155B, 155C, 155D), each chip region (155 A, 155B, 155C, 155D) comprising a pattern of opaque and clear sub-regions corresponding to features of an integrated circuit chip and one or more kerf regions (160A, 160B, 160C, 160D), each kerf region (160A, 160B, 160C, 160D) comprising a pattern of opaque and clear sub-regions corresponding to features of an integrated circuit kerf; a clear region (125A) formed adjacent to a side of a copy region (170A, 170B), the copy region (170A, 170B) comprising opaque and clear sub-regions that are copies of at least a part of the cell region (110); and an opaque region (115) between the clear region (125A, 125B, 125C, 125D) and the cell region (110).
Abstract:
A FinFET structure and method of forming a FinFET device. The method includes: (a) providing a semiconductor substrate (100), (b) forming a dielectric layer (110) on a top surface (105) of the substrate (100); (c) forming a silicon fin (135) on a top surface (115) of the dielectric layer (110); (d) forming a protective layer (160) on at least one sidewall (150A) of the fin (135); and (e) removing the protective layer (160) from the at least one sidewall (150A) in a channel region (175) of the fin (135). In a second embodiment, the protective layer (160) is converted to a protective spacer (210A).
Abstract:
The present invention relates generally to semiconductor devices and, more specifically, to damascene gates having protected shorting regions and related methods for their manufacture. A first aspect of the invention provides a method of forming a damascene gate with protected shorting regions, the method comprising: forming a damascene gate having: a gate dielectric atop a substrate; a gate conductor atop the gate dielectric; a conductive liner laterally adjacent the gate conductor; a spacer between the conductive liner and the substrate; and a first dielectric atop the gate conductor; removing a portion of the conductive liner; and depositing a second dielectric atop a remaining portion of the conductive liner, such that the second dielectric is laterally adjacent both the first dielectric and the gate.
Abstract:
Disclosed herein are embodiments of an interface device (100, 200) (e.g., a display, touchpad, touchscreen display, etc.) with integrated power collection functions. In one embodiment, a solar cell (110, 210) or solar cell array can be located within a substrate (10) at a first surface (11) and an array (120, 220) of interface elements can also be located within the substrate (10) at the first surface (11) such that portions of the solar cell(s) (110, 210) laterally surround the individual interface elements (121, 221) or groups thereof. In another embodiment, a solar cell (110, 210) or solar cell array (120, 220) can be located within the substrate (10) at a first surface (11) and an array of interface elements (120, 220) can be located within the substrate (10) at a second surface (12) opposite the first surface (11) (i.e., opposite the solar cell or solar cell array). In yet another embodiment, an array of diodes, which can function as either solar cells (110, 210) or sensing elements, can be within a substrate (10) at a first surface (11) and can be wired to allow for selective operation in either a power collection mode or sensing mode.
Abstract:
Hierin werden Ausführungsformen einer Interface-Einheit (100, 200) (z. B. eines Bildschirms, eines Touchpads, eines berührungsempfindlichen Bildschirms usw.) mit integrierten Stromgewinnungsfunktionen offenbart. In einer weiteren Ausführungsform können eine Solarzelle (110, 210) oder eine Solarzellenmatrix innerhalb eines Substrats (10) an einer ersten Oberfläche (11) angeordnet werden und eine Matrix (120, 220) von Interface-Elementen kann ebenfalls innerhalb des Substrats (10) an der der ersten Oberfläche (11) angeordnet werden, sodass Teile der Solarzelle/n (110, 210) die einzelnen Interface-Elemente (121, 221) oder deren Gruppen seitlich umgeben. Gemäß einer weiteren Ausführungsform können eine Solarzelle (110, 210) oder eine Solarzellenmatrix (120, 220) innerhalb des Substrats (10) an einer ersten Oberfläche (11) angeordnet werden und eine Matrix von Interface-Elementen (120, 220) kann innerhalb des Substrats (10) an einer der ersten Oberfläche (11) gegenüber (d. h. der Solarzelle oder der Solarzellenmatrix gegenüber) liegenden zweiten Oberfläche (12) angeordnet werden. Gemäß noch einer weiteren Ausführungsform kann sich eine Matrix von Dioden, die entweder als Solarzellen (110, 210) oder als Sensorelemente fungieren können, innerhalb eines Substrats (10) an einer ersten Oberfläche (11) angeordnet und so verdrahtet sein, dasmodus oder in einem Sensormodus betrieben werden können.
Abstract:
A buried butted contact and method for its fabrication are provided which includes a substrate having dopants of a first conductivity type and having shallow trench isolation. Dopants of a second conductivity type are located in the bottom of an opening in said substrate. Ohmic contact is provided between the dopants in the substrate and the low diffusivity dopants that is located on a side wall of the opening. The contact is a metal silicide, metal and/or metal alloy.