Abstract:
A semiconductor device is provided that includes a semiconductor chip, a plurality of solder bumps that electrically couple the semiconductor chip to the outside, and a metal bump being provided on the surface of each first solder bump which is at least a part of the plurality of solder bumps and being made of a metal having a melting point higher than that of the first solder bump. The wettability of the first solder bump is improved as each metal bump serves as a core when the corresponding first solder bump melts. Thus, the connection reliability of the first solder bump can be improved.
Abstract:
First, there are prepared a semiconductor chip with a group of solder bumps disposed on and joined to a surface thereof in a predetermined pattern, and a multilayer plate including a second layer as an electrically conductive layer and first and third layers disposed on respective opposite surfaces of the second layer and comprising metal layers of one metal. Then, the first layer and the third layer of the multilayer plate are etched in a predetermined pattern to form a first group of posts and a second group of posts which have a pattern identical to the pattern of the group of solder bumps. Then, semiconductor chip is positioned to hold the solder bumps in contact with the posts of the first group, and the solder bumps are melted to join the solder bumps to the posts of the first group. Thereafter, the second layer is cut between the posts of the first and second groups, producing separate multilayer posts.
Abstract:
A method and system of utilizing inexpensively manufactured, electrically conductive and mechanically compliant disks to interconnect an area grid array (“AGA”) chip to a printed wiring board. The conductive disk shaped leads are stamped from a thin sheet of conductive material. To increase solderability and protect the disk surface, the disks can be plated with tin or an equivalent material. Each disk is positioned tangent to the surface of an AGA chip in a specific orientation. One edge of each disk is electrically connected and mechanically secured to a corresponding conductive pad located on the surface of the AGA chip. The opposite edge of each conductive disk is positioned to align with a corresponding conductive surface pad on a printed wiring board (“PWB”). Each opposite edge is electrically connected and mechanically secured to the surface of the PWB, thereby establishing a compliant electrical connection between the AGA chip and the PWB.
Abstract:
A solder preform is provided for forming interconnections between multilayer ceramic substrates comprising an upper layer and lower layer of solder separated by an intermediate layer of a material which is wettable by solder and which does not melt at the temperatures used to reflow the solder and form the connections. The solder preform is used to join the substrates and is particularly useful to simultaneously electrically interconnect the substrates and to form a hermetic seal between the substrates being joined.
Abstract:
A solder preform is provided for forming interconnections between multilayer ceramic substrates comprising an upper layer and lower layer of solder separated by an intermediate layer of a material which is wettable by solder and which does not melt at the temperatures used to reflow the solder and form the connections. The solder preform is used to join the substrates and is particularly useful to simultaneously electrically interconnect the substrates and to form a hermetic seal between the substrates being joined.
Abstract:
Pads which are attached to a high density printed circuit board (PCB) having a plurality of through-holes opening on the top surface. A plurality of pads are formed on a carrier sheet so that each of the pads have a copper layer proximate to the carrier sheet and a joining metal layer formed on top of said copper layer. The plurality of pads are positioned on the carrier sheet so that they are aligned with the through-hole pattern on the top surface of the PCB, the pads bing laminated to the through-holes on the top surface using the joining metal, and the carrier sheet being separated from the plurality of pads that are joined to the through-holes so that the copper layer is exposed. The pads may possess a variety of shapes such as disk-shaped, elongated, or rectangular, and can cover one or multiple through-holes. An electrical component may be soldered to the pad. The pad and through-hole may be compressed so that the top surface of the pad is even (flush) with the top surface of an external dielectric surface.
Abstract:
Contact pads (18) of a device (12) are adapted for bonding components such as contacts of a circuit assembly thereto. At least two of the pads (18) are interconnected with a member (34) containing bonding material. Portions of the member (34) lying adjacent the pads (18) are then removed to form isolated bodies (42) containing bonding material on the pads (18). The member (37) may be of a composite structure containing bonding material associated with a hard element (61). The bodies (42) formed therefrom contain a hard element portion (62) having dimensions which remain substantially unchanged to define a desired minimum distance between respective pads (18) and contacts when they are bonded together.
Abstract:
A flexible printed circuit (FPC) and electronic component assembly. The FPC comprises a first protective layer having a first opening, a main layer on the first protective layer, and a second protective layer having a second opening exposing the main layer. The heat produced from the electronic component can be transmitted to the main layer by a heat-conductive medium between the electronic component and the main layer, and can be diffused via the first opening.
Abstract:
A method to replace an electrical interface on a printed circuit board having a plurality of contact pads on a top surface, the contact pads being connected to conducting material extending through said circuit board. For the contact pad being replaced, drilling a hole through said printed circuit board at that location, and removing any remaining conductor material attached to the contact pad on the top board surface. Providing a replacement conductor/contact pad structure having a generally T-configuration with a stem and a head that completely surrounds the stem, wherein said head has a diameter greater than the diameter of the drilled hole. Inserting the replacement conductor/contact pad into the hole with said stem extending beyond the second surface of the board with the bottom surface of the head being in contact with the first surface of said board. A replacement conductor/contact pad on repaired board is also described.
Abstract:
There are provided a flip-chip-type semiconductor device and a manufacturing method thereof that can sufficiently reduce stress generated in the connecting portions between a semiconductor chip and a mounting substrate, and can achieve excellent mounting reliability. A pad electrode is selectively formed on the surface of a semiconductor chip, conductive post including at least two conductive layers, which have different materials each other, on the pad electrode, and bump electrode is formed on the conductive post. The bump electrode is connected to a mounting substrate, and the pad electrode is electrically connected to the mounting substrate. The conductive post is formed by forming first conductive layer and second conductive layer on the first conductive layer selectively on a base material (temporary substrate), electrically connecting the first and second conductive layers to the pad electrode, and thereafter separating the temporary substrate from the first conductive layer.