Abstract:
A method for landing a UVA is provided. The said method is composed of the following steps: applying a magnetic levitation force upon the UAV, controlling the magnetic levitation force to land the UAV. A UAV, a UAV landing system and a docking station for landing the UAV are also provided.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for controlling an unmanned aerial vehicle within an environment are provided. In one aspect, a system comprises one or more sensors carried by the unmanned aerial vehicle and configured to provide sensor data and one or more processors. The one or more processors can be individually or collectively configured to: determine, based on the sensor data, an environment type for the environment; select a flight mode from a plurality of different flight modes based on the environment type, wherein each of the plurality of different flight mode is associated with a different set of operating rules for the unmanned aerial vehicle; and cause the unmanned aerial vehicle to operate within the environment while conforming to the set of operating rules of the selected flight mode.
Abstract:
In some embodiments, an apparatus includes a processor and a memory. The memory is connected to the processor and stores instructions executed by the processor to receive a video segment of a moving object recorded by an Unmanned Aerial Vehicle (UAV). The memory also stores instructions executed by the processor to receive a measured moving object parameter and edit the video segment of the moving object based on the measured moving object parameter to form an edited video segment. The memory stores instructions executed by the processor to send the edited video segment.
Abstract:
Some embodiments include an unmanned aerial vehicle (UAV) copter for consumer photography or videography. The UAV copter can determine a first elevation of the UAV copter and a second elevation of an operator device. The UAV copter can adjust the first elevation by controlling thrust power of one or more propeller drivers to maintain a preset elevation difference between the first elevation and the second elevation. The UAV copter can locate a target subject relative to the UAV copter. The UAV copter can adjust at least one of the propeller drivers to point a first camera of the UAV copter at the operator device. In some embodiments, in response to detecting that the UAV copter has been thrown, the UAV copter can provide power adjustments for propeller drivers of the UAV copter to have the UAV copter reach a predetermined elevation above an operator device.
Abstract:
Provided is a system and method for delivering mail and goods using a mobile robot drone system. The method may comprise self‐moving the mobile robot drone system to a mail or goods receiving location. Data on the mail or goods receiving location and mail or goods to deliver id received from a user. Itinerary to the mail or goods receiving location is determined based on itinerary data received from a GPS unit. In the location, the mobile robot drone system receives the mail or goods via a mail and goods compartment and then delivers the mail or goods to a predefined location. Based on user instructions, the mobile robot drone system electronically signs receipt verification documents or performs payment by displaying a payment barcode encoding user payment information. After delivering the mail or goods, the mobile robot drone system provides access to the mail and goods compartment.
Abstract:
무인 수직이착륙 비행체의 충전 및 격납을 위한 장치 및 그 방법이 개시된다. 비행체를 수용하는 장치, 장치의 외측에 구비되며, 비행체가 착륙하는 착륙부, 비행체를 격납 또는 충전하여 상태 데이터 모니터링을 하는 격납장치부, 비행체와 장치가 통신하여, 착륙할 수 있도록 돕는 센서부로 구성될 수 있다. 이는, 복수개의 비행체를 격납 및 충전시키면서 이동할 수 있어, 비행체의 이동시간을 단축시킴으로써, 운용의 효율성을 증가시킬 수 있다.