-
公开(公告)号:CN100413778C
公开(公告)日:2008-08-27
申请号:CN03823444.0
申请日:2003-08-28
Applicant: 伊利诺斯大学理事会
Inventor: 拉尔夫·G·努佐 , 威廉·罗伯特·蔡尔兹
IPC: B81C1/00
CPC classification number: B81C1/0046 , B81C2201/034 , B82Y10/00 , B82Y40/00 , G03F7/0002 , Y10T428/24562 , Y10T428/24628
Abstract: 一种制造微结构的方法,它包括在含硅弹性体的表面中形成图案;将所述图案与一基底接触;将所述氧化图案与所述基底粘合,从而使得所述图案与所述基底不可逆地附着在一起。该含硅弹性体可以可除去地附着在一转印垫上。
-
公开(公告)号:CN101061058A
公开(公告)日:2007-10-24
申请号:CN200580023116.6
申请日:2005-05-24
CPC classification number: A61M25/00 , B27N3/08 , B28B3/06 , B81C99/0085 , B81C2201/034 , B81C2203/032 , B81C2203/038 , B82Y10/00 , B82Y40/00 , G03F7/0002 , Y10T428/24479 , Y10T428/254
Abstract: 本发明涉及微米或纳米级压印方法以及使用这些方法来构造支撑和/或自支撑3-D聚合物、陶瓷和/或金属微米和/或纳米结构的用途。在一些实施例中,采用双模方法来构成这些结构。在这类方法中,用表面处理来将不同的表面能量加到不同的模具上和/或模具的不同部分上。这种表面处理能通过压印来形成三维(3-D)结构并能使这种结构转移到一个基片上。在某些或者其它的实施例中,这种表面处理以及所用聚合物玻璃转变温度的变化有助于将这种3D结构从模具上分开从而形成单独的和/或在一膜中形成自支撑微米和/或纳米结构。在某些或者是其它的实施例中,利用一种“扣上”组合技术来形成支撑和/或自支撑堆栈式微米和/或纳米结构,其能在没有玻璃转变温度的情况下组装聚合物并消除组装热塑性聚合物所需的加热。
-
公开(公告)号:CN1997691A
公开(公告)日:2007-07-11
申请号:CN200480034620.1
申请日:2004-09-23
Applicant: 北卡罗来纳大学查珀尔希尔分校 , 北卡罗来纳州大学 , 加州理工学院
Inventor: 约瑟夫·M.·德西蒙 , 贾森·P.·罗兰 , 斯蒂芬·R.·夸克 , 德里克·A.·绍兹曼 , 贾森·亚伯勒 , 迈克尔·范达姆
CPC classification number: B01L3/502707 , B01L3/0268 , B01L3/502738 , B01L7/52 , B01L2200/12 , B01L2300/0816 , B01L2400/0481 , B01L2400/0655 , B81B1/006 , B81B2201/058 , B81B2203/0323 , B81C2201/034 , B82Y10/00 , B82Y40/00 , C08G18/5015 , C08G18/8116 , C08G65/007 , C08G65/33348 , C08G2650/48 , C09D163/00 , C09D171/02 , F16K99/0001 , F16K99/0015 , F16K99/0026 , F16K99/0034 , F16K99/0036 , F16K99/0042 , F16K99/0046 , F16K99/0051 , F16K99/0059 , F16K99/0061 , F16K99/0065 , F16K2099/008 , F16K2099/0084 , F16K2099/0086 , G03F7/0002 , Y10T137/0396 , Y10T428/24479 , Y10T428/249954 , Y10T428/3154
Abstract: 本发明公开了一种用作制造耐溶剂微流体器件的材料的官能化的光固化的全氟聚醚。这些耐溶剂的微流体器件可以用来控制少量流体(例如有机溶剂)的流动,并且进行在其它聚合物基微流体器件内不能进行的微尺度化学反应。
-
公开(公告)号:CN1729086A
公开(公告)日:2006-02-01
申请号:CN200380106855.2
申请日:2003-11-20
Applicant: 皇家飞利浦电子股份有限公司
CPC classification number: B29C37/0053 , B29C33/42 , B29C43/021 , B29C2035/0827 , B29L2011/0016 , B29L2031/756 , B81B3/0035 , B81B2201/047 , B81C2201/034
Abstract: 本发明涉及一种用于调制光束的微机械热结构和制造该结构的方法。该微机械结构包括两层在第一方向和第二方向上分别具有不同热膨胀系数的材料,第一方向横向于第二方向,并且所述两层包含取向聚合物,所述第一层的取向聚合物的分子指向矢横向于所述第二层的取向聚合物的分子指向矢。这种微机械结构的阵列可以形成用于调制光的热光调制器。该方法包括提供具有定向诱导层的模的步骤,以便在液晶单体的单体状态中获得分子取向,还包括用光致聚合作用固定该分子取向的步骤。
-
公开(公告)号:KR1020090080918A
公开(公告)日:2009-07-27
申请号:KR1020090005584
申请日:2009-01-22
Applicant: 허니웰 인터내셔널 인코포레이티드
Inventor: 칼슨로버트제이.
CPC classification number: B29C33/3842 , B29C41/00 , B29C59/14 , B29C59/16 , B29K2909/00 , B29K2995/0037 , B81B7/00 , B81B2201/05 , B81B2201/058 , B81B2203/0127 , B81C99/009 , B81C2201/0132 , B81C2201/0143 , B81C2201/034 , C23F1/02 , H01L21/30604 , Y10T428/24496
Abstract: An aerogel-based mold for MEMS fabrication and formation is provided to reduce time to manufacture a micro electric machine characteristic part by reducing time to form a patterned material layer. An aerogel-based mold for MEMS fabrication and formation comprises an aerogel layer(11). The aerogel layer approximately has the thickness of 10 nm ~ 1 mm. The aerogel layer has a structural characteristic part having the same surface contour with a partial surface contour of a micro electric machine characteristic part and is evaporated on a substrate.
Abstract translation: 提供用于MEMS制造和形成的基于气凝胶的模具,以通过减少形成图案化材料层的时间来减少制造微电机特征部件的时间。 用于MEMS制造和形成的基于气凝胶的模具包括气凝胶层(11)。 气凝胶层的厚度约为10nm〜1mm。 气凝胶层具有具有与微电机特征部分的局部表面轮廓相同的表面轮廓并在基底上蒸发的结构特征部分。
-
公开(公告)号:NO20016268A
公开(公告)日:2002-02-27
申请号:NO20016268
申请日:2001-12-20
Applicant: CALIFORNIA INST OF TECHN
Inventor: UNGER MARC A , CHOU HOU-PU , THORSEN TODD A , SCHERER AXEL , QUAKE STEPHEN R
IPC: G03F7/20 , B01L3/00 , B81B1/00 , B81B3/00 , B81B7/00 , B81C1/00 , B81C99/00 , C12Q1/68 , F04B17/00 , F04B35/04 , F04B43/04 , F15C5/00 , F16K7/00 , F16K17/02 , F16K99/00 , F16K
CPC classification number: B29C51/00 , B01L3/502707 , B01L3/50273 , B01L3/502738 , B01L2300/0861 , B01L2300/0887 , B01L2300/123 , B01L2400/046 , B01L2400/0481 , B01L2400/0655 , B33Y80/00 , B81B5/00 , B81B2201/036 , B81B2201/054 , B81C1/00119 , B81C2201/019 , B81C2201/034 , C12Q1/6874 , F04B43/043 , F15C1/06 , F15C5/00 , F16K11/20 , F16K13/00 , F16K31/126 , F16K99/0001 , F16K99/0015 , F16K99/0046 , F16K99/0048 , F16K99/0051 , F16K99/0059 , F16K2099/0074 , F16K2099/0076 , F16K2099/0078 , F16K2099/008 , F16K2099/0094 , Y10T137/0491 , Y10T137/0497 , Y10T137/2224 , Y10T137/87249 , Y10T156/10 , Y10T428/24479 , Y10T428/24744 , C12Q2535/125
-
公开(公告)号:KR1020150015130A
公开(公告)日:2015-02-10
申请号:KR1020130090733
申请日:2013-07-31
Applicant: 아주대학교산학협력단
IPC: C23C18/22 , C23C18/31 , C23F4/00 , H01L21/3065
CPC classification number: C23F1/12 , B22F1/0018 , B22F1/0044 , B22F9/02 , B22F2001/0037 , B22F2304/05 , B81C1/00492 , B81C2201/0187 , B81C2201/034 , C23C18/1605 , C23C18/1657 , C23C18/1893 , C23C18/405 , C23F4/00 , H01J2237/0203 , H01J2237/3341 , H01L21/288 , Y10T29/49982
Abstract: The present invention relates to a method of forming a three-dimensional copper nanostructure which includes steps of: manufacturing a test piece in a structure including an SiO2 mask; etching a plasma inclined in multiple directions to form a three-dimensional etching structure layer on the test piece; coating to enable metal to be filled in the portion in which the plasma inclined in multiple directions is etched; removing an overcoated portion and the SiO2 mask from the metal; and removing portions besides the metal which is the three-dimensional etching structure layer from the surface of the test piece. According to the present invention, to overcome a limitation of a focused ion beam etching (FIBE) method for manufacturing a copper nanostructure, a high-density plasma is used for etching the plasma inclined in multiple directions on a large test piece arranged on a faraday box, a copper film is formed on a gap of the etched test piece, and the overcoated copper film and the SiO2 mask are removed, thereby forming uniform arrays of a copper nanostructure, and being able to randomly control a diameter of the copper nanostructure for high applicability.
Abstract translation: 本发明涉及一种形成三维铜纳米结构的方法,包括以下步骤:在包括SiO 2掩模的结构中制造试片; 蚀刻沿多个方向倾斜的等离子体,在试片上形成三维蚀刻结构层; 涂覆以使金属能够被填充在其中等离子体在多个方向上倾斜的部分被蚀刻; 从金属中除去外涂部分和SiO 2掩模; 从该试片的表面除去作为三维蚀刻结构层的金属以外的部分。 根据本发明,为了克服用于制造铜纳米结构的聚焦离子束蚀刻(FIBE)方法的限制,使用高密度等离子体在布置在法拉第的大型试片上蚀刻沿多个方向倾斜的等离子体 在蚀刻试验片的间隙上形成铜膜,除去外涂铜膜和SiO 2掩模,形成均匀的铜纳米结构体阵列,能够随机控制铜纳米结构体的直径 适用性高。
-
38.
公开(公告)号:KR1020120072653A
公开(公告)日:2012-07-04
申请号:KR1020100134507
申请日:2010-12-24
Applicant: 고려대학교 산학협력단
CPC classification number: B81B1/002 , B01L3/502707 , B01L3/502746 , B01L2300/0816 , B01L2300/0858 , B01L2300/0887 , B01L2400/086 , B81B2201/058 , B81B2203/0338 , B81C1/00103 , B81C1/00634 , B81C99/0085 , B81C2201/019 , B81C2201/034 , C12N5/0618 , C12N2535/00 , Y10T428/13
Abstract: PURPOSE: A cylindrical channel for a micro fluid chip, a method for manufacturing the same, a coaxial channel including the cylindrical channel, and a method for manufacturing the coaxial channel are provided to improve the performance of a mixer or a uniform agitator by inducing unstable fluid. CONSTITUTION: A cylindrical channel for a micro fluid chip includes saw-toothed grooves on the cross section. The cross section of the cylinder channel is tapered or constant. The thicknesses of the grooves are in a range between 3 and 15um. The widths of the grooves are in a range between 5 and 15um. Gaps between the grooves are in a range between 10 and 20um. A method for manufacturing the cylinder channel includes the following: a film is located on a base mold with a mold groove and a pressure adjusting hole; and pressures to the film are adjusted to arrange a plurality of saw-toothed grooves on the upper side of the film.
Abstract translation: 目的:提供一种用于微流体芯片的圆柱形通道,其制造方法,包括圆柱形通道的同轴通道和用于制造同轴通道的方法,以通过诱导不稳定的方式来改善混合器或均匀搅拌器的性能 流体。 构成:用于微流体芯片的圆柱形通道在横截面上包括锯齿槽。 气缸通道的横截面为锥形或恒定。 槽的厚度在3和15um之间的范围内。 槽的宽度在5和15um之间的范围内。 槽之间的间隙在10和20um之间的范围内。 一种制造气缸通道的方法包括:一个薄膜位于具有模槽和压力调节孔的基模上; 并且调节胶片的压力以在胶片的上侧布置多个锯齿形凹槽。
-
公开(公告)号:KR1020040094460A
公开(公告)日:2004-11-10
申请号:KR1020030028246
申请日:2003-05-02
Applicant: 전자부품연구원
IPC: B81C1/00
CPC classification number: B81C1/00031 , B29C33/38 , B29C33/42 , B81C1/00444 , B81C2201/034
Abstract: PURPOSE: A micro mold for reproducing micro parts and a method for manufacturing the same are provided to achieve a mechanical characteristic superior to that of a Ni plating mold by performing Ni plating for a master mold and sequentially coating an Ni-W alloy on the Ni plating. CONSTITUTION: A method for manufacturing a micro mold includes a first process of forming an Ni master mold(200) by performing electroplating on developed and etched sections of a substrate, a second process of coating an Ni-W alloy(300a) on an upper surface of the Ni master mold(200), and a third process of removing a photoresist from the substrate. While performing the first process, current is applied through a direct current scheme, a pulse scheme, or a pulse-reverse scheme. The pulse-reverse scheme is carried out by using a plastic injection molding material.
Abstract translation: 目的:提供一种用于再现微型部件的微型模具及其制造方法,以通过对母模进行Ni镀层并在Ni上依次涂覆Ni-W合金来实现优于Ni镀覆模具的机械特性 电镀。 构成:微型模具的制造方法包括:通过在基板的显影和蚀刻部分上进行电镀来形成Ni母模(200)的第一工序,在上部涂覆Ni-W合金(300a)的第二工序 Ni母模(200)的表面,以及从基板去除光致抗蚀剂的第三工序。 在执行第一过程时,通过直流方案,脉冲方案或脉冲反向方案施加电流。 脉冲反向方案通过使用塑料注射成型材料进行。
-
公开(公告)号:KR1020140026075A
公开(公告)日:2014-03-05
申请号:KR1020120093027
申请日:2012-08-24
Applicant: 한국표준과학연구원
CPC classification number: B01L3/502707 , B01L2300/0816 , B81B2201/058 , B81C99/0085 , B81C2201/034
Abstract: The present invention relates to a method for producing a thin film chip replica and a method for producing a microfluidic chip using a film chip replica produced by the method and, more specifically, to a method for producing a film chip replica by injecting hardening-type polymer solution to the top of a microfluidic chip mold and by performing processes for coating, hardening, and heteromorphism of the hardening-type polymer solution to produce film hardening-type polymer solution having a particular thickness by using a blade having microcracks, and to a method for producing a microfluidic chip through a step of bonding plate substrates at the bottom and the top of the film chip replica produced thereby. The microfluidic chip having the film chip replica according to the present invention analyzes particular amino acids or proteins to be utilized for disease diagnosis, food analysis, and biochemistry. Tissue cells can be cultured in the microfluidic chip, and medical or biological experiments can be performed through the cultured tissue cells.
Abstract translation: 本发明涉及一种薄膜芯片复制品的制造方法和使用该方法制造的薄膜芯片复制品的微流控芯片的制造方法,更具体地说,涉及一种通过注入硬化型的薄膜芯片复制品的制造方法 聚合物溶液到微流体芯片模具的顶部并且通过执行硬化型聚合物溶液的涂覆,硬化和异相的方法,以通过使用具有微裂纹的刮板产生具有特定厚度的薄膜硬化型聚合物溶液,并且 通过在由其制造的薄膜芯片副本的底部和顶部粘合平板基板的步骤来制造微流体芯片的方法。 具有根据本发明的膜芯片复制品的微流体芯片分析用于疾病诊断,食品分析和生物化学的特定氨基酸或蛋白质。 可以在微流体芯片中培养组织细胞,并且可以通过培养的组织细胞进行医学或生物学实验。
-
-
-
-
-
-
-
-
-