-
公开(公告)号:KR101786330B1
公开(公告)日:2017-10-18
申请号:KR1020160047132
申请日:2016-04-18
Applicant: 현대자동차주식회사
CPC classification number: B60R13/0815 , B60R13/0212 , B62D25/06 , B62D29/043
Abstract: 복합재재질의루프패널; 루프패널의하면에부착된복합재재질의보강틀; 보강틀내에서보강틀과연결되며, 연속적으로이격배치된복수의제1보강멤버; 및제1보강멤버와교차되면서보강틀과연결되고, 연속적으로이격배치되어제1보강멤버와보강틀내에트러스구조를형성하는복수의제2보강멤버;를포함하는차량의루프가소개된다.
Abstract translation: 复合屋顶板; 一种复合材料加固框架,连接在屋顶板上; 多个第一加强构件,连接到加强框架中的加强框架并且彼此连续地间隔开; Mitje 1被连接到所述加强框架的加强用横向部件,它被连续地布置在间隔开的第一加强构件和多个第二加强构件,以形成所述加固框架内的桁架结构;所述车辆包括:一个引入的循环。
-
公开(公告)号:KR1020170067215A
公开(公告)日:2017-06-16
申请号:KR1020150173347
申请日:2015-12-07
Applicant: 현대자동차주식회사
IPC: B29B17/02
CPC classification number: B29B17/02 , B29B2017/0293 , B29K2105/06 , B29K2105/26 , B29K2307/04 , Y02W30/622
Abstract: 강화섬유가와인딩되고수지에함침된강화부품으로부터수지를분리하며강화섬유를풀어내는언와인딩(unwinding)단계; 언와인딩된강화섬유를사이징액에통과시켜강화섬유에사이징액을코팅하는사이징단계; 및사이징액이코팅된강화섬유를맨드렐에와인딩하는와인딩(winding)단계;를포함하는강화섬유회수방법이소개된다.
-
公开(公告)号:KR1020170005256A
公开(公告)日:2017-01-12
申请号:KR1020150094361
申请日:2015-07-01
Applicant: 현대자동차주식회사
CPC classification number: B32B27/08 , B29C70/32 , B29C70/347 , B32B5/028 , B32B5/10 , B32B5/142 , B32B5/26 , B32B7/005 , B32B7/04 , B32B7/12 , B32B15/04 , B32B15/14 , B32B37/06 , B32B37/10 , B32B37/18 , B32B2038/0076 , B32B2260/021 , B32B2260/046 , B32B2262/0269 , B32B2262/101 , B32B2262/106 , B32B2307/558 , B32B2605/00 , B62D25/04
Abstract: 본발명은차량용복합재멤버에관한것으로, 베이스를이루는합성수지에복수의강화섬유가개재된형태이며, 강화섬유는멤버의길이방향을기준으로사선으로배열되되각각의강화섬유가이루는기울기는멤버의길이방향을따라점진적으로변하는연속변화층; 및연속변화층과면착되어멤버를구성하고, 베이스를이루는합성수지에복수의강화섬유가상호교차된직물형상으로개재되는보강층;을포함하는차량용복합재멤버가소개된다.
Abstract translation: 特别地,连续变化层中的多根增强纤维被布置成相对于车辆的纤维增强塑料构件的纵向方向倾斜,并且加强纤维相对于纵向方向的角度 沿着长度方向逐渐变化的纤维增强塑料构件和增强层中的多个增强纤维嵌入合成树脂中并以网状图案相互交叉。
-
公开(公告)号:KR101684193B1
公开(公告)日:2016-12-08
申请号:KR1020150176387
申请日:2015-12-10
Applicant: 현대자동차주식회사
CPC classification number: B62D27/02 , B60R13/02 , B60R2013/0287 , B62D29/048 , F16B5/065
Abstract: 부착면이형성된차량의제1멤버; 일정두께와면적을갖는패널형상이며, 하면이부착면에접착되어제1멤버에고정되고상면은개방되며, 복수의교차하는격벽을통해허니콤구조로형성되어상면이개방된복수의결합공간을구성하는복합재재질의체결브라켓; 및차량의제2멤버에마련되며, 제2멤버에서체결브라켓측으로돌출되고, 돌출된부분은결합공간에삽입되어고정됨으로써제1멤버와제2멤버가체결되도록하는체결공구;를포함하는차량의어셈블리가소개된다.
-
公开(公告)号:KR101620226B1
公开(公告)日:2016-05-24
申请号:KR1020140169942
申请日:2014-12-01
Applicant: 현대자동차주식회사
CPC classification number: B62D21/157 , B62D25/04 , B62D29/046 , B60R19/023 , B62D29/00
Abstract: 차체의결합되고, 루프면, 좌측면, 우측면및 플로어면으로구성되되, 환형으로연결되는 B필러;를포함하는차량용 B필러유닛이소개된다.
Abstract translation: 引入了一种用于车辆的B柱单元,其包括耦合到底盘的B柱,由屋顶表面,左表面,右表面和地板表面组成,并且连接成环形 。 因此,本发明即使在侧面碰撞的情况下也能够防止由焊接部引起的破损。
-
公开(公告)号:KR101417217B1
公开(公告)日:2014-07-09
申请号:KR1020110122476
申请日:2011-11-22
Applicant: 현대자동차주식회사
Abstract: 본 발명은 탄소섬유용 전구체 섬유의 제조방법에 관한 것으로서, 더욱 상세하게는 인장강도와 압축강도가 우수한 탄소섬유를 생산하는 데 사용되는 전구체 섬유를 제조하기 위해 초연신(Superdrawing) 공정을 이용하여 종래의 단성분 방사구금(Single Component Spinneret)으로 미세 섬도(denier)의 전구체 섬유를 제조하여 안정화 시간의 단축과 더불어 고강력, 고탄성 탄소섬유를 얻을 수 있도록 하는 탄소섬유용 전구체 섬유의 제조방법에 관한 것이다.
-
公开(公告)号:KR1020130120611A
公开(公告)日:2013-11-05
申请号:KR1020120043634
申请日:2012-04-26
Applicant: 현대자동차주식회사
CPC classification number: G01N25/18 , B82B1/00 , Y10S977/70
Abstract: The purpose of the present invention is to provide a method for measuring the thermal conductivity coefficient of boron nitride nanotube (BNNT), which is to measure a thermal conductivity coefficient, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the thermal conductivity coefficient of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model in temperature and pressure conditions for property calculation and by minimizing the total energy, and using a specimen cell obtained in this process for simulation; and calculating a thermal conductivity coefficient by making a difference between two sides of the specimen cell and by calculating the flow of energy on the both sides. [Reference numerals] (AA) Start;(BB) Set BNNT model;(CC) Optimize structure;(DD) Prepare simulation time slice;(EE) Calculate coefficient thermal conductivity;(FF) End
Abstract translation: 本发明的目的是提供一种用于测量导热系数的氮化硼纳米管(BNNT)的热导率系数的方法,其用于测量机械性能中的重要性质,使用基于 关于分子动力学,没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的导热系数测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过在温度和压力条件下稳定模型的体积来进行性质计算并通过使总能量最小化并使用在该过程中获得的样本池进行模拟来确定原子结构; 并且通过使样本池的两侧之间的差异和通过计算两侧的能量流量来计算导热系数。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟时间片;(EE)计算系数热导率;(FF)结束
-
公开(公告)号:KR1020130120610A
公开(公告)日:2013-11-05
申请号:KR1020120043633
申请日:2012-04-26
Applicant: 현대자동차주식회사
CPC classification number: G01N3/24 , B82Y30/00 , B82Y40/00 , C01B21/0641 , G01N2203/0025 , G01N2203/0075
Abstract: The purpose of the present invention is to provide a method for measuring the shear modulus of boron nitride nanotube (BNNT), which is to measure a shear modulus, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the shear modulus of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating energy by applying twisting moment to the specimen cell, and calculating the shear modulus of the specimen cell from the relationship between the energy and the angle of twisting. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate a shear coefficient;(FF) End
Abstract translation: 本发明的目的是提供一种测量氮化硼纳米管(BNNT)的剪切模量的方法,该方法是使用基于分子的模拟技术来测量机械性能之间的重要性质的剪切模量 动力学没有任何直接的实验。 为了达到上述目的,通过本发明制备的BNNT的剪切模量的测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并通过对试样细胞施加扭转力矩来计算能量,并根据能量与扭转角度之间的关系来计算试样细胞的剪切模量。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算剪切系数;(FF)结束
-
公开(公告)号:KR1020130120608A
公开(公告)日:2013-11-05
申请号:KR1020120043629
申请日:2012-04-26
Applicant: 현대자동차주식회사
CPC classification number: G01N25/16 , B82B1/00 , Y10S977/70
Abstract: The purpose of the present invention is to provide a method for measuring the thermal expansion coefficient of boron nitride nanotube (BNNT), which is to measure a thermal expansion coefficient, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the thermal expansion coefficient of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating stress by increasing the temperature of the specimen cell at a temperature range between 0 and 300 K, measuring changes in the length of the specimen cell, and calculating the thermal expansion coefficient of the specimen cell. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate coefficient of expansion;(FF) End
Abstract translation: 本发明的目的是提供一种用于测量热膨胀系数的氮化硼纳米管(BNNT)的热膨胀系数的方法,该热膨胀系数是机械性能中的重要性质,使用基于 关于分子动力学,没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的热膨胀系数的测定方法包括以下步骤:在基于碱性原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并通过在0〜300K的温度范围内增加试样池的温度来计算应力,测定试样池长度的变化,计算试样池的热膨胀系数。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算膨胀系数;(FF)结束
-
公开(公告)号:KR1020130120607A
公开(公告)日:2013-11-05
申请号:KR1020120043628
申请日:2012-04-26
Applicant: 현대자동차주식회사
CPC classification number: G01N3/24 , B82Y30/00 , B82Y40/00 , C01B21/0641 , G01N2203/0025 , G01N2203/0075
Abstract: The purpose of the present invention is to provide a method for measuring the elastic modulus of boron nitride nanotube (BNNT), which is to measure an elastic modulus, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the elastic modulus of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating stress by applying displacement to the specimen cell in a desired direction and measuring the elastic modulus of the specimen cell. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate elastic modulus;(FF) End
Abstract translation: 本发明的目的是提供一种用于测量弹性模量的氮化硼纳米管(BNNT)的弹性模量的方法,该弹性模量是机械性能之间的重要性质,使用基于分子的模拟技术 动力学没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的弹性模量测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并且通过在所需方向上向样品池施加位移并测量样品池的弹性模量来计算应力。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算弹性模量;(FF)结束
-
-
-
-
-
-
-
-
-