Abstract:
A method of manufacturing a plurality of through-holes (132) in a layer of first material, for example for the manufacturing of a probe (100) comprising a tip containing a channel. To manufacture the through-holes (132) in a batch process, - a layer of first material is deposited on a wafer (200) comprising a plurality of pits (210) - a second layer is provided on the layer of first material, and the second layer is provided with a plurality of holes at central locations of the pits (210); - using the second layer as a shadow mask when depositing a third layer (240) at an angle, covering a part of the first material with said third material (240) at the central locations, and - etching the exposed parts of the first layer using the third layer (240) as a protective layer.
Abstract:
A pressure sensor die assembly comprises a base substrate having a first surface, a stop structure on the first surface, and a diaphragm structure coupled to the first surface. The diaphragm structure comprises a first side with a cavity section including a first cavity and a second cavity surrounding the first cavity; a pressure sensing diaphragm portion having a first thickness and defined by the first cavity; and an over pressure diaphragm portion having a second thickness and defined by the second cavity, the second thickness greater than the first thickness. When an over pressure is applied, at least some area of the pressure sensing diaphragm portion is deflected and supported by the stop structure. As over pressure is increased, the over pressure diaphragm portion deflects and engages with the first surface such that additional area of the pressure sensing diaphragm portion is deflected and supported by the stop structure.
Abstract:
A method of manufacturing a base body having a microscopic hole, includes: forming at least one of a first modified region and a second modified region by scanning inside of a base body with a focal point of a first laser light having a pulse duration on order of picoseconds or less; forming a periodic modified group formed of a plurality of third modified regions and fourth modified regions by scanning an inside of the base body with a focal point of a second laser light having a pulse duration on order of picoseconds or less; obtaining the base body which is formed so that the first modified region and the second modified region overlap or come into contact with the modified group; and forming a microscopic hole by removing the first modified region and the third modified regions by etching.
Abstract:
The invention relates to a method of making a three-dimensional structure in semiconductor material. A substrate (20) is provided having at least a surface comprising semiconductor material. Selected areas of the surface of the substrate are to a focused ion beam whereby the ions are implanted in the semiconductor material in said selected areas. Several layers of a material selected from the group consisting of mono-crystalline, poly-crystalline or amorphous semiconductor material, are deposited on the substrate surface and between depositions focused ion beam is used to expose the surface so as to define a three-dimensional structure. Material not part of the final structure (30) defined by the focused ion beam is etched away so as to provide a three-dimensional structure on said substrate (20).
Abstract:
The invention provides a system and process of patterning structures on a surface comprising exposing part of the surface to an ion flux, such that material properties of the exposed surface are modified to provide a mask effect on the surface. A further step of etching unexposed parts of the surface forms the structures on the surface. The inventors have discovered that by controlling the ion exposure, alteration of the surface structure at the top surface provides a mask pattern, without substantially removing any material from the exposed surface. The mask allows for subsequent ion etching of unexposed areas of the surface leaving the exposed areas raised relative to the unexposed areas thus manufacturing patterns onto the surface. For example, a Ga+ focussed ion beam exposes a pattern onto a diamond surface which produces such a pattern after its exposure to an oxygen plasma etch. The invention is particularly suitable for patterning of clear well-defined structures down to nano-scale dimensions.
Abstract:
A method an apparatus for manufacturing a microfluidic device (10) is disclosed in which a laser is used to remove selected portions of one of the layers that make up the device. The portion of the layer may be removed before the layer is amalgamated with other layers making up the device, or the portion may be removed after the layers have been bonded together. The laser beam used to accomplish removal is a combination of at least two laser beams (3, 4), one of which (3) may be a continuous beam to form a melt of the portion to be removed, the other (4) being pulsed or modulated in some way to periodically induce shockwaves which remove the portion. The laser beams use at least one part (5, 8, 9) of the same alignment system.
Abstract:
A method for fabrication of microscopic structures that uses a beam process, such as beam-induced decomposition of a precursor, to deposit a mask in a precise pattern and then a selective, plasma beam is applied, comprising the steps of first creating a protective mask upon surface portions of a substrate using a beam process such as an electron beam, focused ion beam (FIB), or laser process, and secondly etching unmasked substrate portions using a selective plasma beam etch process. Optionally, a third step comprising the removal of the protective mask may be performed with a second, materially oppositely selective plasma beam process.
Abstract:
The invention relates to a method for manufacturing nanometer-scale apertures, wherein, in an object, in a conventional manner, at least one aperture is provided with a nanometer-scale surface area, after which, by means of an electron beam, energy is supplied to at least the edge of said at least one aperture, such that the surface area of the respective aperture is adjusted, wherein the surface area of the aperture is controlled during adjustment and the supply of energy is regulated on the basis of the surface area change.
Abstract:
A microelectromechanical device (MEMD) defined within a substrate of a MEMS includes a mass element defining an area of interest. The device also includes a support beam supporting the mass element in spaced-apart relationship from the substrate. The support beam includes a first beam member defined by a first fixed end connected to the substrate, and a first free end connected to the mass element. The support beam further includes a second beam member defined by a second fixed end connected to the substrate, and a second free end connected to the mass element. The beam members are in spaced-apart relationship from one another. A first cross member connects the first beam member and the second beam member. Preferably, the support beam includes a plurality of cross members. Two such support beams can be used to support a mass element in a MEMD in a bridge configuration.