Abstract:
A radiation analyzer includes a primary ray source that generates primary rays, an optical system applies the primary rays emitted from the primary ray source to a sample, an energy-dispersive radiation detector that detects radiation that has been generated from the sample when the primary rays have been applied to the sample, and a support that supports the radiation detector so that the tilt of the center axis (C) of the radiation detector with respect to the optical axis (Z) of the optical system can be changed.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Abstract:
A charged particle beam inspection apparatus includes: an electron gun emitting an electron beam; first and second condenser lenses used to focus the electron beam; a beam control panel disposed between the first and second condenser lenses; and a control unit performing stabilizing processing in which excitation currents respectively supplied to the first condenser lens and the second condenser lens are set to have predetermined values, thereby the current amount of the electron beam passing through an opening of the beam control panel is regulated so that the electron beam to be emitted onto the sample has a larger current amount than that at a measurement, and then the electron beam is emitted onto the sample for a predetermined time period. After the stabilizing processing, the control unit sets the values of the excitation currents back to values for the measurement in order to measure dimensions of the sample, the excitation currents respectively supplied to the first and second condenser lenses.
Abstract:
A charged particle beam deflection system provides a three or more level charged particle beam deflection arrangement and is therefore capable of extremely high speed and positional accuracy. The system preferably employs a major/minor magnetic deflection arrangement as well as orthogonal electrostatic deflectors at a level of speed and positional accuracy and which minimizes the need for dynamic correction to achieve high linearity and positioning accuracy at extremely low aberration levels. The system can also be made relatively noise insensitive by providing one or more split deflectors which are also useful in providing increased speed and adjustment of radial and azimuthal telecentricity. The use of a transfer lens allows the cluster and subfield deflectors to be optimally placed to exploit different forms of LAD to obtain telecentricity at all levels of the deflection hierarchy. The use of such lens assisted deflection allows the electron optical system and drivers therefor to be minimized in number or enabled noise to be reduced and adjustments of telecentricity to be made without increase of complexity over the prior art. By employing the deflection arrangement of the present invention in electron beam lithography apparatus, the throughput of such apparatus can be greatly improved.
Abstract:
A multi-electron beam writing apparatus includes a light source array to include plural light sources and generate plural first lights, a multi-lens array to include plural first lenses, and to divide the plural first lights into plural second lights by that each of the plural first lights illuminates a corresponding lens set of plural lens sets each composed of plural second lenses being a portion of the plural first lenses and by that each of lenses, being at least a part of the plural second lenses, is irradiated with two or more first lights of the plural first lights, a photoemissive surface to receive the plural second lights through its upper surface, and emit multiple photoelectron beams from its back surface, and a blanking aperture array mechanism to perform an individual blanking control by individually switching between ON and OFF of each of the multiple photoelectron beams.
Abstract:
The invention relates to an image capture assembly and method for use in an electron backscatter diffraction (EBSD) system. An image capture assembly comprises a scintillation screen (10) including a predefined screen region (11), an image sensor (20) comprising an array of photo sensors and a lens assembly (30). The image capture assembly is configured to operate in at least a first configuration or a second configuration. In the first configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto the array and in the second configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto a sub-region (21) of the array. In each of the first and second configurations the field of view of the lens assembly (30) is the same.
Abstract:
A beam current transmission system and method are disclosed. The beam current transmission system comprises an extraction device, a mass analyzer, a divergent element, a collimation element and a speed change and turning element, wherein an analysis plane of the mass analyzer is perpendicular to a convergent plane of the extracted beam, and after entering an entrance, the beam is converged on a convergent point in a plane perpendicular to the analysis plane, and then is diverged from the convergent point and transmitted to the divergent element from an exit; the collimation element is used for parallelizing the beam in a transmission plane of the beam; and the speed change and turning element is used for enabling the beam to change speed so as to achieve a target energy while the beam is deflected so that the transmission direction of the beam changes by a first pre-set angle. Through the coordinated cooperation among a plurality of beam current optical elements, a relatively wider distribution can be formed in a vertical plane, so the invention is suitable to the processing of a wafer with a large size and also ensure better injection uniformity on the premise of avoiding energy contamination.
Abstract:
One embodiment relates to a method of automated inspection of scattered hot spot areas on a manufactured substrate using an electron beam apparatus. A stage holding the substrate is moved along a swath path so as to move a field of view of the electron beam apparatus such that the moving field of view covers a target area on the substrate. Off-axis imaging of the hot spot areas within the moving field of view is performed. A number of hot spot areas within the moving field of view may be determined, and the speed of the stage movement may be adjusted based on the number of hot spot areas within the moving field of view. Another embodiment relates to an electron beam apparatus for inspecting scattered areas on a manufactured substrate. Other embodiments, aspects and features are also disclosed.
Abstract:
An ion implantation apparatus includes a beam parallelizing unit and a third power supply unit. The beam parallelizing unit includes an acceleration lens, and a deceleration lens disposed adjacent to the acceleration lens in an ion beam transportation direction. The third power supply unit operates the beam parallelizing unit under one of a plurality of energy settings. The plurality of energy settings includes a first energy setting suitable for transport of a low energy ion, and a second energy setting suitable for transport of a high energy ion beam. The third power supply unit is configured to generate a potential difference in at least the acceleration lens under the second energy setting, and generate a potential difference in at least the deceleration lens under the first energy setting. A curvature of the deceleration lens is smaller than a curvature of the acceleration lens.
Abstract:
In some aspects, an ion implantation system is disclosed that includes an ion source for generating a ribbon ion beam and at least one corrector device for adjusting the current density of the ribbon ion beam along its longitudinal dimension to ensure that the current density profile exhibits a desired uniformity. The ion implantation system can further include other components, such as an analyzer magnet, and electrostatic bend and focusing lenses, to shape and steer the ion beam to an end station for impingement on a substrate. In some embodiments, the present teachings allows the generation of a nominally one-dimensional ribbon beam with a longitudinal size greater than the diameter of a substrate in which ions are implanted with a high degree of longitudinal profile uniformity.