Abstract:
본 발명은 회로 기판에 관한 것이다. 회로 기판(10)은 베이스체(1)와 도파 선로(2)와 적층형 도파로(3)를 포함한다. 이 도파 선로(2)는 베이스체(1)의 제 1 면에 적어도 일부가 위치한다. 이 도파 선로(2)는 고주파 신호를 전송한다. 적층형 도파로(3)는 베이스체(1)의 내부에 형성된다. 이 적층형 도파로(3)는 도파 선로(2)에 전자적으로 결합하고 또한 베이스체(1)의 내부로부터 제 1 면과 다른 면으로 인출되는 도출부(3a)를 갖는다. 적층형 도파로(3)는 유전체층(31)과 1쌍의 주 도체층(32)과 관통 도체군(34)을 포함한다. 이 1쌍의 주 도체층(32)은 유전체층(31)을 두께 방향으로 사이에 둔다. 관통 도체군(34)은 고주파 신호의 전송 방향을 따라 복수의 관통 도체(33)가 배열되어 있다. 이 복수의 관통 도체(33)는 1쌍의 주 도체층(34)을 상호 전기적으로 접속한다.
Abstract:
밀리미터파의 2개의 신호 처리 기판간의 지지 구조 및 신호 전송 방법을 고안하여, 밀리미터파의 신호에 기초하는 전자파를 유전체 전송로 내에 전송할 수 있도록 함과 함께, 종래 방식과 같은 2개의 신호 처리 기판간을 접속하는 통신 케이블이나 커넥터 등을 삭제할 수 있도록 한다. 복수의 회로 기판을 구비한 전자 기기에 있어서, 회로 기판을 지지하는 지지 부재를 무선 신호의 전송로로서 이용한다. 예를 들어, 밀리미터파의 신호를 처리하는 제1 프린트 기판(1)과, 프린트 기판(1)에 대하여 신호 결합되어, 밀리미터파의 신호를 수신하여 신호 처리하는 제2 프린트 기판(2)과, 프린트 기판(1, 2)과의 사이에 소정의 유전율을 갖고 배치된 도파관(513)을 구비하고, 도파관(513)이 유전체 전송로를 구성함과 함께 도파관(513)이 프린트 기판(1, 2)을 지지하는 것이다. 이 구성에 의해, 유전체 전송로를 구성하는 도파관(513)의 일단부로부터 복사한 밀리미터파의 신호에 기초하는 전자파를 타단부에서 수신할 수 있게 된다.
Abstract:
An object of the present invention is to provide a conductive film that is excellent in flexibility while maintaining its sufficient transparency and conductivity, and a conductive film roll, an electronic paper, a touch panel, and a flat-panel display having the same. A conductive film having a transparent substrate and a conductive part having a fine metal wire pattern disposed on one side or both sides of the transparent substrate, wherein
the fine metal wire pattern is constituted by a fine metal wire, and the conductive film satisfies the following condition (i) or (ii):
(i) the fine metal wire has voids, and when the cross-sectional area of the fine metal wire is defined as SM and the total cross-sectional area of the voids included in the cross-section of the fine metal wire is defined as SVtotal on the cross-section of the fine metal wire perpendicular to the direction of drawing of the fine metal wire, SVtotal/SM is 0.10 or more and 0.40 or less; and (ii) when the maximum thickness of the fine metal wire on the cross-section of the fine metal wire perpendicular to the direction of drawing of the fine metal wire is defined as T, the width of the fine metal wire at a height of 0.90T from the fine metal wire interface on the transparent substrate side is defined as W0.90 and the width of the fine metal wire on the fine metal wire interface on the transparent substrate side is defined as W0, W0.90/W0 is 0.40 or more and 0.90 or less.
Abstract:
The present disclosure provides a millimeter-wave waveguide communication system. The millimeter-wave waveguide communication system may comprise: a clock component, and at least two sets of millimeter-wave receiving/transmitting channels. The clock component is configured to provide a clock signal to sending ends and receiving ends of the two sets of millimeter-wave receiving/sending channels respectively. Each set of millimeter-wave receiving/sending channels comprises: a transmitter component, a receiver component and a transmission waveguide. The transmission waveguide is located between the transmitter component and the receiver component and is configured to provide a channel for millimeter-wave transmission. The top face, side face and/or bottom face of the transmission waveguide, except for active devices and accessories thereof, are plated with a metal conductive wall to form an electromagnetic shield from a transmission waveguide in an adjacent millimeter-wave receiving/sending channel. The metal conductive wall can minimize the crosstalk between the channels during high-speed communications, thereby improving data bandwidth and data throughput of the millimeter-wave communication system.
Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
A circuit board is provided. The circuit board includes a substrate, a waveguide line and a laminated waveguide. The waveguide line is at least partially positioned on a first surface of the substrate. The waveguide line transmits a high frequency signal. The laminated waveguide is formed inside the substrate. The laminated waveguide is electromagnetically coupled to the waveguide line, and has a lead-out portion led out from inside the substrate to a surface other than the first surface. The laminated waveguide includes a dielectric layer, a pair of main conductive layers and a through conductor group. The pair of main conductive layers sandwiches the dielectric layer in a thickness direction thereof. In the through conductor group, a plurality of through conductors are arranged along a high frequency signal transmitting direction. The plurality of through conductors electrically connect the pair of main conductive layers.