Abstract:
A metal-clad laminate according to the present embodiment includes an insulating layer, and a metal layer present on at least one surface side of the insulating layer. The insulating layer is a laminate of at least three layers of a center layer, a first resin layer present on one surface side of the center layer, and a second resin layer present on the other surface side of the center layer. The center layer, the first resin layer and the second resin layer each contain a cured product of a resin composition. Coefficients of thermal expansion of the cured products of the resin compositions contained in the first resin layer and the second resin layer are smaller than a coefficient of thermal expansion of the cured product of the resin composition contained in the center layer.
Abstract:
A metal-clad laminate according to the present embodiment includes an insulating layer, and a metal layer present on at least one surface side of the insulating layer. The insulating layer is a laminate of at least three layers of a center layer, a first resin layer present on one surface side of the center layer, and a second resin layer present on the other surface side of the center layer. The center layer, the first resin layer and the second resin layer each contain a cured product of a resin composition. Coefficients of thermal expansion of the cured products of the resin compositions contained in the first resin layer and the second resin layer are smaller than a coefficient of thermal expansion of the cured product of the resin composition contained in the center layer.
Abstract:
A substrate board includes an electrical connection network on a face thereof. An integrated-circuit chip is mounted to the face of the substrate board in electrical contact with the electrical connection network. A local reinforcing or balancing layer made of a non-metallic material is mounted to the face of the substrate board in at least one local zone free of the face which is free of metal portions of the electrical connection network.
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure ste
Abstract:
Disclosed herein are an external connection terminal part, a semiconductor package having the external connection terminal part, and a method for manufacturing the same. According to a preferred embodiment of the present invention, the external connection terminal part includes an insulating material and metal plating pattern formed on both surfaces of the insulating material.
Abstract:
New glass compositions and applications thereof are disclosed. A glass composition as described herein can include 50 to 55 weight percent SiO2, 17 to 26 weight percent B2O3, 13 to 19 weight percent Al2O3, 0 to 8.5 weight percent MgO, 0 to 7.5 weight percent ZnO, 0 to 6 weight percent CaO, 0 to 1.5 weight percent Li2O, 0 to 1.5 weight percent F2, 0 to 1 weight percent Na2O, 0 to 1 weight percent Fe2O3, 0 to 1 weight percent TiO2, and 0 to 8 weight percent of other constituents. Also described herein are glass fibers formed from such compositions, composites, and articles of manufacture comprising the glass compositions and/or glass fibers.
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure step.
Abstract:
Problem: To prepare a prepreg having high thermal conductivity and a low thermal expansion coefficient. Resolution Means: The prepreg of the present disclosure is composed of a composite layer including an alumina-containing cloth including ceramic fibers and a thermosetting resin composition impregnated into the alumina-containing cloth and having a thermal conductivity coefficient greater than or equal to 1.0 W/(mK).
Abstract:
An angle-adjustable printed circuit board structure having two printed circuit board sections arranged angularly with respect to one another. The printed circuit board structure contains at least one conduction element which is embedded at least predominantly in the printed circuit board structure and which extends between two contact pads and is electrically conductively connected to said contact pads. The two contact pads are situated on different printed circuit board sections. The printed circuit board sections are angle-adjustable and/or angled relative to one another with maintenance of the connections between the contact pads and the at least one conduction element and with bending of the at least one conduction element via a bending edge between the printed circuit board sections. The conduction element has a larger extent along the bending edge than perpendicularly thereto, as viewed in cross section.
Abstract:
An object of the present invention is to provide a resin composition that can attain cured products having high flame retardancy, high heat resistance, a small coefficient of thermal expansion, and high drilling processability, a prepreg having the resin composition, laminate and a metal foil clad laminate having the prepreg, and a printed circuit board having the resin composition. A resin composition, having at least an epoxy silicone resin (A) prepared by reacting a linear polysiloxane (a) having a carboxyl group with a cyclic epoxy compound (b) having an epoxy group such that the epoxy group of the cyclic epoxy compound (b) is 2 to 10 equivalents based on the carboxyl group of the linear polysiloxane (a), a cyanic acid ester compound (B) and/or a phenol resin (C), and an inorganic filler (D).