Abstract:
A prepreg is provided. The prepreg is prepared by immersing a reinforcing material into a resin composition and drying the immersed reinforcing material, wherein the resin composition has a first dielectric constant and comprises a thermosetting resin component, a hardener and a filler. The reinforcing material has a second dielectric constant, and the ratio of the first dielectric constant to the second dielectric constant ranges from 0.8 to 1.05.
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure step.
Abstract:
A printed circuit board package structure includes a substrate, plural ring-shaped magnetic elements, a support layer, and first conductive layers. The substrate has two opposite first and second surfaces, first ring-shaped recesses, and first grooves. Each of the first ring-shaped recesses is communicated with another first ring-shaped recess through at least one of the first grooves, and at least two of the first ring-shaped recesses are communicated with a side surface of the substrate through the first grooves to form at least two openings. The ring-shaped magnetic elements are respectively located in the first ring-shaped recesses. The support layer is located on the first surface, and covers the first ring-shaped recesses and the first grooves. The support layer and the substrate have through holes. The first conductive layers are respectively located on surfaces of support layer and substrate facing the through holes.
Abstract:
A metal-clad laminate according to the present embodiment includes an insulating layer, and a metal layer present on at least one surface side of the insulating layer. The insulating layer is a laminate of at least three layers of a center layer, a first resin layer present on one surface side of the center layer, and a second resin layer present on the other surface side of the center layer. The center layer, the first resin layer and the second resin layer each contain a cured product of a resin composition. Coefficients of thermal expansion of the cured products of the resin compositions contained in the first resin layer and the second resin layer are smaller than a coefficient of thermal expansion of the cured product of the resin composition contained in the center layer.
Abstract:
The disclosure concerns polymer compositions exhibiting LDS properties while maintaining mechanical properties and a dark color throughout the composition.
Abstract:
An object of the present invention is to provide a resin composition that can attain cured products having high flame retardancy, high heat resistance, a small coefficient of thermal expansion, and high drilling processability, a prepreg having the resin composition, a laminate and a metal foil clad laminate having the prepreg, and a printed circuit board having the resin composition. A resin composition, having at least an epoxy silicone resin (A) prepared by reacting a linear polysiloxane (a) having a carboxyl group with a cyclic epoxy compound (b) having an epoxy group such that the epoxy group of the cyclic epoxy compound (b) is 2 to 10 equivalents based on the carboxyl group of the linear polysiloxane (a), a cyanic acid ester compound (B) and/or a phenol resin (C), and an inorganic filler (D).
Abstract:
A conductive pattern formation method of the present invention includes a first exposure step of radiating active light in a patterned manner to a photosensitive layer including a photosensitive resin layer provided on a substrate and a conductive film provided on a surface of the photosensitive resin layer on a side opposite to the substrate; a second exposure step of radiating active light, in the presence of oxygen, to some or all of the portions of the photosensitive layer not exposed at least in the first exposure step; and a development step of developing the photosensitive layer to form a conductive pattern following the second exposure step.
Abstract:
PROBLEM TO BE SOLVED: To prepare a prepreg having high thermal conductivity and a low thermal expansion coefficient.SOLUTION: A prepreg comprises a composite layer including: an alumina-containing cloth containing ceramic fibers; and a thermosetting resin composition impregnated into the alumina-containing cloth and having a thermal conductivity coefficient greater than or equal to 1.0 W/(m K). In a prepreg, the ceramic fibers contain at least 99 mass% of alumina. In a prepreg, the crystal structure of the alumina of the ceramic fibers is the α type. In a prepreg, the thermal conductivity coefficient of the thermosetting resin composition is greater than or equal to 2.0 W/(m K).