Abstract:
A rip stop material is attached at a stress area of a flexible circuit board in order to strengthen the flexible circuit board and minimize ripping and cracking in the polyimide and/or the copper conductors of the circuit. A rip stop transition layer is formed and deposited at a location on the flexible circuit in order to minimize, reduce, if not preventing cracking and ripping of the circuit as it is bent and flexed. The rip stop transition layer can be placed at different locations on and within the flexible circuit in order to minimize cracking and ripping as the flexible circuit is bent, flexed and twisted.
Abstract:
A printed circuit board with high-capacity and high-current copper circuit includes a conductive trace, a first protecting layer, and a second protecting layer on opposite sides of the conductive trace. The conductive trace includes a basic conductive trace pattern, a first conductive trace pattern, and a second conductive trace pattern. The first and second conductive trace patterns are directly formed on opposite surfaces of the basic copper conductive trace pattern. A width of trace of the first conductive trace pattern is the same as a line width of the second conductive trace pattern.
Abstract:
A method of manufacturing a conductive layer on a support body includes a first process of forming a precursor layer containing at least one of metal particles and metal oxide particles on the support body; a second process of forming a sintering layer by irradiating an electromagnetic wave pulse on the precursor layer; and a third process of compressing the sintering layer. The conductive layer is formed by repeating the first to third processes “N” times, where “N” denotes a natural number equal to or greater than 2, on the same location of the support body, and the third process performed in the first to (N−1)th operations includes forming a surface of the sintering layer in an uneven shape.
Abstract:
This disclosure relates generally to devices, systems, and methods for making a flexible microelectronic assembly. In an example, a polymer is molded over a microelectronic component, the polymer mold assuming a substantially rigid state following the molding. A routing layer is formed with respect to the microelectronic component and the polymer mold, the routing layer including traces electrically coupled to the microelectronic component. An input is applied to the polymer mold, the polymer mold transitioning from the substantially rigid state to a substantially flexible state upon application of the input.
Abstract:
An active chip package substrate and a method for preparing the same. The active chip package substrate includes: a core board; at least one upper active chip, embedded in the core board and having an active surface facing toward a lower surface of the core board, the upper active chip being an active bare chip; and at least one lower active chip, embedded in the core board and having an active surface facing toward an upper surface of the core board, the lower active chip being an active bare chip.
Abstract:
Mechanical measures strengthen a flexible circuit board or deformable electronic by manipulating the location and/or intensity of the stress concentration or to limit bending, torsion, and stretching. A material layer is patterned onto the flexible circuit board with a specific pattern and place of deposition in order to modify the stress concentration and profile of the circuit board and increase its overall strength. The material layer may be configured to modify the stress concentrations during bending away from the weak points in the assembly or to spread the stress during bending by increasing the radius of the bend curvature and therefore decreasing the chance of mechanical failure.
Abstract:
A vertically separated electrode structure includes a polymeric material post on a substrate. An inorganic material cap covers the top of the post and extends beyond an edge of the post in at least a width dimension to define a first reentrant profile. A first electrode is located over the cap. A second electrode is located over the substrate and not over the post. The second electrode is adjacent to the edge of the post in the reentrant profile such that a distance between the first electrode and second electrode is greater than zero when measured orthogonally to the substrate surface. The first electrode and second electrode have the same material composition and layer thickness.
Abstract:
Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
Abstract:
An embedded printed circuit board and a method of manufacturing the same. The embedded printed circuit board includes: an insulating layer on which a cavity is formed; a chip mounted on the cavity; and a circuit layer formed on the insulating layer, wherein the insulating layer is made of photosensitive compositions including photosensitive monomer and photoinitiator. As a result, the cavity can be formed by selectively using only the insulating layer, thereby making it possible to secure a degree of freedom in the design of the embedded printed circuit board.
Abstract:
In a conductive film formed by photo sintering of a film composed of copper particulates, adhesiveness to a base material of the conductive film is improved. A circuit board includes a circuit including a conductive film, and a substrate. The circuit board further includes a resin layer between the substrate and the conductive film. The substrate is made of a non-thermoplastic base material. The resin layer contains a thermoplastic resin. The conductive film is formed by photo sintering of a film composed of copper particulates, and thus improving adhesiveness of the conductive film to the base material through the resin layer.