Surfactant-enhanced protection of micromechanical components from galvanic degradation
    81.
    发明公开
    Surfactant-enhanced protection of micromechanical components from galvanic degradation 审中-公开
    通过使用表面活性剂从电分解改进的保护微机械元件

    公开(公告)号:EP1403211A3

    公开(公告)日:2005-09-14

    申请号:EP03255693.8

    申请日:2003-09-11

    Abstract: A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate (step 102). The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component (step 104 or 106). The sacrificial material is removed with a release solution (step 108 or 110). At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.

    MICROMACHINE SWITCH AND ITS PRODUCTION METHOD
    82.
    发明公开
    MICROMACHINE SWITCH AND ITS PRODUCTION METHOD 审中-公开
    MICROMASCHINEN-SCHALTER UND SEIN VERFAHRENFÜRDIE HERSTELLUNG。

    公开(公告)号:EP1146533A1

    公开(公告)日:2001-10-17

    申请号:EP99959908.7

    申请日:1999-12-20

    Abstract: A micro-machine switch in accordance with the present invention includes a supporter having a predetermined height relative to a surface of a substrate, a flexible cantilever projecting from the supporter in parallel with a surface of the substrate, and having a distal end facing a gap formed between two signal lines, a contact electrode formed on the cantilever, facing the gap, a lower electrode formed on the substrate in facing relation with a part of the cantilever, and an intermediate electrode formed on the cantilever in facing relation with the lower electrode. The micro-machine switch can operate at a lower drive voltage than a voltage at which a conventional micro-machine switch operates, and can enhance a resistance of an insulating film against a voltage.

    Abstract translation: 根据本发明的微型机器开关包括:相对于基板的表面具有预定高度的支撑件,从支撑件平行于基板的表面突出的柔性悬臂,并且具有面向间隙的远端 形成在两个信号线之间,形成在悬臂上的接触电极,面对间隙;与基板的一部分悬臂形成在基板上的下电极,以及形成在悬臂上的中间电极,与下电极 。 微机开关可以在比常规微机开关操作的电压低的驱动电压下工作,并且可以增强绝缘膜对电压的电阻。

    微結構體之製造方法及微結構體
    83.
    发明专利
    微結構體之製造方法及微結構體 有权
    微结构体之制造方法及微结构体

    公开(公告)号:TW574129B

    公开(公告)日:2004-02-01

    申请号:TW092109990

    申请日:2003-04-29

    IPC: B81B

    Abstract: 用以製造一具有薄厚部(T1~T3)之微結構體的製造方法,包含有:
    預薄厚部形成工程,係對於含有由第一導體層(11)及第二導體層(12)所成之層合結構的材料基板,從第一導體層(11)之邊側進行第一蝕刻處理,藉此於第二導體層(12)形成預薄厚部(T1'~T3'),其具有向該第二導體層(12)之面內方向隔離之一對側面,以用來接合於第一導體層(11),其中,第二導體層(12)具有相當於薄厚部(T1~T3)之厚度之厚度;及
    薄厚部形成工程,係藉由來自第一導體層(11)側之第二蝕刻處理,除去第一導體層(N)中接合於預薄厚部(T1'~T3')之處所以形成薄厚部。

    Abstract in simplified Chinese: 用以制造一具有薄厚部(T1~T3)之微结构体的制造方法,包含有: 预薄厚部形成工程,系对于含有由第一导体层(11)及第二导体层(12)所成之层合结构的材料基板,从第一导体层(11)之边侧进行第一蚀刻处理,借此于第二导体层(12)形成预薄厚部(T1'~T3'),其具有向该第二导体层(12)之面内方向隔离之一对侧面,以用来接合于第一导体层(11),其中,第二导体层(12)具有相当于薄厚部(T1~T3)之厚度之厚度;及 薄厚部形成工程,系借由来自第一导体层(11)侧之第二蚀刻处理,除去第一导体层(N)中接合于预薄厚部(T1'~T3')之处所以形成薄厚部。

    具生物感測器晶片的生物識別系統 BIOLOGICAL IDENTIFICATION SYSTEM WITH INTEGRATED SENSOR CHIP
    84.
    发明专利
    具生物感測器晶片的生物識別系統 BIOLOGICAL IDENTIFICATION SYSTEM WITH INTEGRATED SENSOR CHIP 有权
    具生物传感器芯片的生物识别系统 BIOLOGICAL IDENTIFICATION SYSTEM WITH INTEGRATED SENSOR CHIP

    公开(公告)号:TWI245073B

    公开(公告)日:2005-12-11

    申请号:TW090110604

    申请日:2001-05-03

    IPC: C12M G01N

    Abstract: 一基於微精密加工技術(MEMS)及積體電路(IC)技術的生物感測器可被用於偵測及感測不同的離子及巨大分子(去氧核糖核甘酸、核糖核甘酸及蛋白質)。基於微精密加工技術(MEMS)的生物感測器包含雜交、酵素放大反應及一電化學偵測方式以提高靈敏度及縮小系統體積。該生物感測器或感測器組皆整合於單一基材上。該生物感測器系統包含至少兩個電極。這些電極包含一工作電極,一相對電極及一計數電極(輔助電極)。該生物感測器及生物感測器組包含運用微小尺寸的表面張力所達成試劑及或溶液的限制之裝置設備及方法。該試劑限制系統包含運用可控制的表面特性及表面張力,使試劑及/或溶液被控制性的與感測器單元(例如電極)接觸。該試劑限制系統亦幫助生物感測器或生物感測器組整合入攜帶型或手攜型裝置,使其裝置不怕振蕩及翻轉。該發明亦提供一生物感測器或生物感測器組整合於積體電路技術中。整個感測系統或系統組可被製造於單一IC基材或晶片上而無需外接元件及/或儀器以完成一全功能之系統或系統組。目前該系統或系統組以IC製程製造在矽基材上。

    Abstract in simplified Chinese: 一基于微精密加工技术(MEMS)及集成电路(IC)技术的生物传感器可被用于侦测及传感不同的离子及巨大分子(去氧核糖核甘酸、核糖核甘酸及蛋白质)。基于微精密加工技术(MEMS)的生物传感器包含杂交、酶放大反应及一电化学侦测方式以提高灵敏度及缩小系统体积。该生物传感器或传感器组皆集成於单一基材上。该生物传感器系统包含至少两个电极。这些电极包含一工作电极,一相对电极及一计数电极(辅助电极)。该生物传感器及生物传感器组包含运用微小尺寸的表面张力所达成试剂及或溶液的限制之设备设备及方法。该试剂限制系统包含运用可控制的表面特性及表面张力,使试剂及/或溶液被控制性的与传感器单元(例如电极)接触。该试剂限制系统亦帮助生物传感器或生物传感器组集成入便携式或手携型设备,使其设备不怕振荡及翻转。该发明亦提供一生物传感器或生物传感器组集成于集成电路技术中。整个传感系统或系统组可被制造於单一IC基材或芯片上而无需外置组件及/或仪器以完成一全功能之系统或系统组。目前该系统或系统组以IC制程制造在硅基材上。

    PLASMA-ASSISTED MICROSTRUCTURE ALIGNMENT AND PRE-BONDING METHOD OF GLASS OR QUARTZ CHIP

    公开(公告)号:EP3306650A4

    公开(公告)日:2018-07-25

    申请号:EP15903951

    申请日:2015-11-17

    Abstract: The plasma-assisted method of precise alignment and pre-bonding for microstructure of glass and quartz microchip belongs to micromachining and bonding technologies of the microchip. The steps of which are as follows: photoresist and chromium layers on glass or quartz microchip are completely removed followed by sufficient cleaning of the surface with nonionic surfactant and quantities of ultra-pure water. Then the surface treatment is proceeded for an equipping surface with high hydrophily with the usage of plasma cleaning device. Under the drying condition, the precise alignment is accomplished through moving substrate and cover plate after being washed with the help of microscope observation. Further on, to achieve precise alignment and pre-bonding of the microstructure of glass and quartz microchip, a minute quantity of ultrapure water is instilled into a limbic crevice for adhesion, and entire water is completely wiped out by vacuum drying following sufficient squeezing. Based on the steps above, it is available to achieve permanent bonding by further adopting thermal bonding method. In summary, it takes within 30 min to finish the whole operation of precise alignment and pre-bonding by this method. Besides, this method is of great promise because of its speediness, efficiency, easy maneuverability, operational safety and wide applications.

    MEMS-BASED METHOD FOR MANUFACTURING SENSOR

    公开(公告)号:EP3150548A4

    公开(公告)日:2018-01-03

    申请号:EP15800029

    申请日:2015-05-05

    CPC classification number: B81C1/00619 B81C1/00 B81C2201/0133 B81C2201/0142

    Abstract: An MEMS-based method for manufacturing a sensor comprises the steps of: forming a shallow channel (120) and a support beam (140) on a front surface of a substrate (100); forming a first epitaxial layer (200) on the front surface of the substrate (100) to seal the shallow channel (120); forming a suspended mesh structure (160) below the first epitaxial layer (200); and forming a deep channel (180) at a position on a back surface of the substrate (100) corresponding to the shallow channel (120), so that the shallow channel (120) is in communication with the deep channel (180). In the Method of manufacturing a MEMS-based sensor, when a shallow channel is formed on a front surface, a support beam of a mass block is formed, so the etching of a channel is easier to control, the process is more precise, and the uniformity and the homogeneity of the formed support beam are better.

    HERSTELLUNGSVERFAHREN FÜR EIN MIKROMECHANISCHES BAUTEIL UND MIKROMECHANISCHES BAUTEIL
    88.
    发明公开
    HERSTELLUNGSVERFAHREN FÜR EIN MIKROMECHANISCHES BAUTEIL UND MIKROMECHANISCHES BAUTEIL 审中-公开
    用于微机械结构和微机械结构

    公开(公告)号:EP3094592A1

    公开(公告)日:2016-11-23

    申请号:EP14800066.4

    申请日:2014-11-20

    Abstract: The invention relates to a production method for a micromechanical part, comprising at least the following steps: forming a main structure (10) of at least one component of the micromechanical part from at least one crystalline layer (12) of a substrate by means of a crystal orientation-independent etching step, and etching at least one area (18) in a defined crystal plane (20) away on the main structure (10) of the at least one component by means of a crystal orientation-dependent etching step. For said crystal orientation-dependent etching step, the defined crystal plane (20) in respect of which the at least one area (18) etched away on the main structure (10) is oriented is the crystal plane that features the lowest etching rate of all crystal planes. The invention further relates to a micromechanical part.

    MICRO-STRUCTURED ATOMIC SOURCE SYSTEM
    89.
    发明公开
    MICRO-STRUCTURED ATOMIC SOURCE SYSTEM 审中-公开
    MIKROSTRUKTURIERTES ATOMARES QUYSYSTEM

    公开(公告)号:EP3078630A1

    公开(公告)日:2016-10-12

    申请号:EP16163573.5

    申请日:2016-04-01

    Abstract: A micro-structured atomic source system is described herein. One system includes a silicon substrate, a dielectric diaphragm, wherein the dielectric diaphragm includes a heater configured to heat an atomic source substance, an intermediary material comprising a chamber configured to receive the atomic source substance, and a guide material configured to direct a flux of atoms from the atomic source substance.

    Abstract translation: 本文描述了微结构原子源系统。 一个系统包括硅衬底,介质隔膜,其中介质隔膜包括配置成加热原子源物质的加热器,包括被配置为接纳原子源物质的室的中间材料,以及引导材料, 原子源物质的原子。

    Process for manufacturing a micromechanical structure having a buried area provided with a filter
    90.
    发明公开
    Process for manufacturing a micromechanical structure having a buried area provided with a filter 有权
    一种用于与带有滤波器的掩埋区制造微机械结构的方法

    公开(公告)号:EP2412665A1

    公开(公告)日:2012-02-01

    申请号:EP11175428.9

    申请日:2011-07-26

    Abstract: A process for manufacturing a micromechanical structure (25) envisages: forming a buried cavity (10) within a body (1, 12) of semiconductor material, separated from a top surface (12a) of the body by a first surface layer (12); and forming an access duct (18a) for fluid communication between the buried cavity (10) and an external environment. The method envisages: forming an etching mask (14) on the top surface (12a) at a first access area (17a); forming a second surface layer (15) on the top surface (12a) and on the etching mask (14); carrying out an etch such as to remove, in a position corresponding to the first access area, a portion of the second surface layer (15), and an underlying portion of the first surface layer (12) not covered by the etching mask (14) until the buried cavity is reached, thus forming both the first access duct (18a) and a filter element (20), set between the first access duct and the same buried cavity.

    Abstract translation: 一种用于制造微机械结构(25)设想过程:半导体材料的主体(1,12)内形成掩埋空腔(10),由第一表面层与所述主体的顶面(12a)的分离(12) ; 以及形成到埋入腔(10)之间,并与外部环境中访问管道(18)流体连通。 该方法设想:在在第一接入区域(17a)的蚀刻顶表面(12A)上掩模(14)成形; 形成所述顶面(12A)上的第二表面层(15)和在蚀刻掩模(14); 进行蚀刻:如以除去,在对应于所述第一接入区,第二表面层(15)的一部分的位置,并在第一表面层(12)未包括的蚀刻掩模的下层部分(14 )达到掩埋空腔直到,从而形成两个第一接入管道(18a)和一个过滤器元件(20),所述第一进出管道和相同的掩埋空腔之间。

Patent Agency Ranking