Abstract:
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
Abstract:
A method for producing a nanotip from a tip material provides a substrate which consists of the tip material or has the material in the form of a coating, produces a mask from a mask material selected so that, in a predefined reactive ion etching process, the mask material is removed at a lower etching rate than the tip material, and carries out the reactive ion etching process in an etching chamber. The mask material is additionally selected so that a gaseous component is released therefrom during the reactive ion etching process, the gaseous component not being released from the tip material. The method further comprises detecting the gaseous component while the ion etching process is being carried out, repeatedly determining whether an amount of the gaseous component in the etching chamber reaches a predefined lower threshold, and stopping the reactive ion etching process when the lower threshold is reached.
Abstract:
Methods for fabrication of self-aligned gated tip arrays are described. The methods are performed on a multilayer structure that includes a substrate, an intermediate layer that includes a dielectric material disposed over at least a portion of the substrate, and at least one gate electrode layer disposed over at least a portion of the intermediate layer. The method includes forming a via through at least a portion of the at least one gate electrode layer. The via through the at least one gate electrode layer defines a gate aperture. The method also includes etching at least a portion of the intermediate layer proximate to the gate aperture such that an emitter structure at least partially surrounded by a trench is formed in the multilayer structure.
Abstract:
An electron emission device and a method of manufacturing the same are provided. The electron emission device includes: i) a substrate including a metal tip; ii) carbon nano tubes that are positioned on the metal tip; and iii) a lithium layer that is positioned on the carbon nano tubes.
Abstract:
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
Abstract:
A metal hexaboride nanowire such as LaB6 with the formed metal-terminated (100) plane at the tip has a small work function, and can emit a very narrow electron beam from the (100) plane. In such emitters, contamination occurs in a very short time period, and the output current greatly decreases when used under low temperature. The cold field emitter of the present invention overcomes this problem with a stabilization process that exposes the metal-terminated (100) plane of the tip to hydrogen at low temperature, and can stably operate over extended time periods.
Abstract:
A metal hexaboride nanowire such as LaB6 with the formed metal-terminated (100) plane at the tip has a small work function, and can emit a very narrow electron beam from the (100) plane. In such emitters, contamination occurs in a very short time period, and the output current greatly decreases when used under low temperature. The cold field emitter of the present invention overcomes this problem with a stabilization process that exposes the metal-terminated (100) plane of the tip to hydrogen at low temperature, and can stably operate over extended time periods.
Abstract:
Methods for fabrication of self-aligned gated tip arrays are described. The methods are performed on a multilayer structure that includes a substrate, an intermediate layer that includes a dielectric material disposed over at least a portion of the substrate, and at least one gate electrode layer disposed over at least a portion of the intermediate layer. The method includes forming a via through at least a portion of the at least one gate electrode layer. The via through the at least one gate electrode layer defines a gate aperture. The method also includes etching at least a portion of the intermediate layer proximate to the gate aperture such that an emitter structure at least partially surrounded by a trench is formed in the multilayer structure.
Abstract:
An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.
Abstract:
A carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate.