Abstract:
An isolator assembly is disclosed. The assembly comprises a laminate consisting essentially of a block of homogenous material and a set of electrical contacts. A first die is coupled to a surface of the laminate. An isolation barrier is located entirely above the surface of the laminate. A second die is coupled to the laminate. The second die is galvanically isolated from the first die by the isolation barrier. The second die is in operative communication with the first die via the isolation barrier and a conductive trace on the laminate. The first die, the second die, the laminate, and the isolation barrier are all contained within an assembly package.
Abstract:
Methods for applying a hydrophobic coating to various components within a computing device are disclosed. More specifically, a hydrophobic coating can be applied by a plasma assisted chemical vapor deposition (PACVD) process to a fully assembled circuit board. Frequently, a fully assembled circuit board can have various components such as electromagnetic interference (EMI) shields which cover water sensitive electronics. A method is disclosed for perforating portions of the EMI shields that overlay the water sensitive electronics. Methods of sealing board to board connectors are also disclosed. In one embodiment solder leads of the board to board connectors can be covered by a silicone seal.
Abstract:
A machine includes a conveyor configured to receive and convey a circuit assembly treated with a UV curable coating material; a UV zone that includes one or more LED-based UV radiation sources; a heating zone; and a controller configured to control heating of a circuit assembly treated with a UV curable coating material in the heating zone to achieve a target temperature of the treated electronic assembly prior to the UV zone. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
A moisture-resistant electronic device includes at least one electronic component at least partially covered by a moisture-resistant coating. The moisture-resistant coating may be located within an interior of the electronic device. The moisture-resistant coating may cover only portions of a boundary of an internal space within the electronic device. A moisture-resistant coating may include one or more discernible boundaries, or seams, which may be located at or adjacent to locations where two or more components of the electronic device interface with each other. Assembly methods are also disclosed.
Abstract:
A film deposition process comprising exposing a surface of a substrate to a first plasma treatment having plasma reactants in a plasma chamber to form an activated substrate surface. The activated surface has a lower water contact angle than the substrate surface before the surface activating. The process comprises introducing water vapor into the plasma chamber to form a water layer on the activated surface. The process comprises introducing pre-cursors molecules into the plasma chamber in the presence of a second plasma to graft a layer of reacted pre-cursor molecules on the water layer.
Abstract:
A conductor pad and a flexible circuit including a conductor pad are provided. The conductor pad includes a first contact region, a second contact region, and a body portion configured to establish a conductive path between the first contact region and the second contact region. The body portion includes a perimeter edge having at least a first convex segment and a second convex with a first non-convex segment disposed between the first convex segment and the second convex segment. A method of constructing a flexible circuit to facilitate roll-to-roll manufacturing of the flexible circuit is also provided.
Abstract:
Formulated resin systems containing polymeric flood coat compositions are provided herein and characterized by having an initial mix thixotropic index from 1 to 5, and a gel time from 5 to 15 minutes such that when cured the compositions provide a Shore hardness from 15 A to 90 A, a thickness on horizontal surfaces from 20 mils to 75 mils, and a thickness on vertical surfaces from 4 mils to 20 mils. Electronic circuit assemblies flood coated with such formulated resin systems, and methods for protecting and supporting said assemblies, are also provided.
Abstract:
The present invention relates application of conformal coatings made up of nano-fiber, nano-particle, and/or nano-capsule materials to be applied on electrical component parts in general and printed circuit boards (PCB) in particular. A conformal coating material, such as Parlyne, can be combined with nano-materials to produce desired results. Benefits of this invention include enhancement of conventional conformal coatings performance in terms of properties such as mechanical, electrical, magnetic and in particular to prevent or obstruct the growth of tin whiskers or any other manufacturing defect that can develop on the surface of a PCB.
Abstract:
A conformal coating system and method for coating a printed circuit board (PCB) is provided. The system comprises a coating station configured to coat the PCB with a coating material and without cleaning the PCB with a saponifier. A surface energy of the PCB is maintained above a target surface energy at least through the cleaning station to promote adhesion of the coating material.