Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. Certain of these components, most notably the beam source subsystem, the beam scanning subsystem and the optical collection and detection subsystem are modular for ready field replacement and/or maintenance. The optical collection and detection system features wing collectors in the front quartersphere and back collectors in the back quartersphere for collected light scattered from the surface of the workpiece. This can greatly improve the measurement capabilities of the system. Also included is a method for detecting asymmetric defects using the wing collectors and back collectors.
Abstract:
A method for inspecting a surface of a workpiece comprises scanning an incident beam on the surface of the workpiece to impinge thereon to create reflected light and scattered light comprising light that is scattered from the surface upon impingement thereon by the incident beam; and determining an extent of a contribution to surface roughness from a component of the surface, with the component having a surface roughness spatial frequency range.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The signal processing subsystem comprises a series of data acquisition nodes, each dedicated to a collection detection module and a plurality of data reduction nodes, made available on a peer to peer basis to each data acquisition nodes. Improved methods for detecting signal in the presence of noise are also provided.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The signal processing subsystem comprises a series of data acquisition nodes, each dedicated to a collection detection module and a plurality of data reduction nodes, made available on a peer to peer basis to each data acquisition nodes. Improved methods for detecting signal in the presence of noise are also provided.
Abstract:
A system for searching for patterns of semiconductor wafer features for use in silicon manufacturing and device fabrication processes, the system including: a data acquisition system 00 for acquiring scan data from differing types of semiconductor wafer scanning tools such as wafer dimensional tools 10, wafer inspection tools 12, and wafer nanotopography tools 14; a buffer system 02 for providing temporary storage for scan data transmitted and for providing fault tolerance; a server system 04 for providing storage for the scan data transmitted from the buffer system 02 and converting the scan data into a format used by and stored in a database 08 management system; an analysis system 06 client station including a display and communicating with the server system 04, the analysis system 06 and the server system 04 providing scan data structuring and query operations and data transfer operations.
Abstract:
A system for integrating semiconductor wafer data for use in silicon manufacturing and device fabrication processes, the system including: a data acquisition system (00) capable of acquiring scan data from differing types of semiconductor wafer scanning tools such as wafer dimensional tools (10), wafer inspection tools (12), and wafer nanotopography tools (14), a buffer system (02) for providing temporary storage for scan data transmitted and for providing fault tolerance; a server system (04) for providing storage for the scan data transmitted from the buffer system (02) and for converting the scan data into a format used by and stored in a database (08) management system; and an analysis system (06), the analysis system (06) and the server system (04) providing wafer data management, process monitoring, wafer data analysis, and data automation.
Abstract:
A population of data points each having three or more parameters associated therewith, such as multi-channel defect data from an optical scanner, are plotted in three dimensions, and grouping of data points are identified. Boundary surfaces are defined in the three-dimensional space for delineating groupings of data points. The different groupings correspond to different data classifications or types. Classification algorithms based on the boundary surfaces are defined. When applied to defect classification, the algorithms can be exported to an optical scanner for runtime classification of defects. An algorithm for identifying a particular grouping of data points can be defined as a Boolean combination of grouping rules from two or more different n-dimensional representations, where n can be either 2 or 3 for each representation.
Abstract:
A ring chuck (70) that holds a wafer (8) with a vacuum uses a vacuum trough (80) that contacts the entire outer edge of the wafer (8). The chuck (70) has a base (72) having a top surface (96) equal to or slightly smaller than a wafer (8) to be tested with vacuum channels in the base (72). The base (72) provides the mechanism to connect the chuck to a measurement instrument and a vacuum source. An annulus (74) of non-contaminant material that has a plurality of concentric rings (76) extending upward from its outer edge is fixed to the base top surface (96) with the trough (80) between the concentric rings (76) connected to the vacuum channels (82). The vacuum trough (80) holds the wafer (8) securely to the chuck and minimizes vibrations when the wafer (8) is rotated. When the plurality of concentric rings (76) are contained within the wafer (8) exclusion band, the print through onto the tested are is minimized.
Abstract:
Determining the systematic error of an instrument that measures features of a semiconductor wafer which a symmetric corrector is calculated by taking the average over all measurement signatures at each load angle. The symmetric corrector is successively rotated to the same angle as a front shape measurement and subtracted, yielding a calibrated wafer data set (80). A wafer mean is computed by averaging these calibrated wafer shape measurements (82). When the wafer mean is substracted from the individual front side corrected shape measurements, a set of shape residual maps for each load angle results (84). The average of the aligned residuals is the asymmmetric error (86). The systematic error is the sum of the symmetric and asymmetric errors (90).
Abstract:
A ring chuck (70) that holds a wafer (8) with a vacuum uses a vacuum trough (80) that contacts the entire outer edge of the wafer (8). The chuck (70) has a base (72) having a top surface (96) equal to or slightly smaller than a wafer (8) to be tested with vacuum channels in the base (72). The base (72) provides the mechanism to connect the chuck to a measurement instrument and a vacuum source. An annulus (74) of non-contaminant material that has a plurality of concentric rings (76) extending upward from its outer edge is fixed to the base top surface (96) with the trough (80) between the concentric rings (76) connected to the vacuum channels (82). The vacuum trough (80) holds the wafer (8) securely to the chuck and minimizes vibrations when the wafer (8) is rotated. When the plurality of concentric rings (76) are contained within the wafer (8) exclusion band, the print through onto the tested are is minimized.