Abstract:
A method of forming a semiconductor device provides a gate electrode (32) on a substrate (30); and an oxide liner (34) that is less than 100 A in thickness on the substrate (30) and the gate electrode (32). A nitride layer (38) is formed on the oxide liner (34). The nitride layer (38) is etched to form nitride spacers (40), the etching stopping on the oxide liner (34). The thinner oxide liner (34), e.g., less than 100 A, prevents the liner (34) from acting as a sink for dopants during thermal processing so that the dopants in the source/drain extension regions (36) and the source/drain regions (42) remain in the substrate (30) during the thermal processing, thereby preventing degradation of transistor performance.
Abstract:
A method includes processing a workpiece in a manufacturing system (10) including a plurality of tools (30). Workpiece fabrication data related to the processing is retrieved. Future processing in the manufacturing system (10) is simulated based on the workpiece fabrication data. At least one process parameter for the future processing is predicted based on the simulating. The workpiece is processed in at least one of the tools (30) based on the predicted process parameter. A system (10) includes a plurality of tools (30) configured to process a workpiece and a simulation unit (110). The simulation unit (110) is configured to retrieve workpiece fabrication data related to the processing, simulate future processing for the workpiece based on the workpiece fabrication data, and predict at least one process parameter for the future processing based on the simulating, wherein at least one of the tools (30) is configured to process the workpiece based on the predicted process parameter.
Abstract:
Semiconductor devices with improved transistor performance are fabricated by forming a composite oxide/nitride liner (24,25) under a gate electrode sidewall spacer (40). Embodiements include depositing a conformal oxide layer (24) by decoupled plasma deposition, depositing a conformal nitride layer (25) by decoupled plasma deposition, depositing a spacer layer (30) and then etching.
Abstract:
An asymmetrical IGFET including a lightly and heavily doped drain regions and an ultra-heavily doped source region is disclosed. Preferably, the lightly doped drain region and ultra-heavily doped source region provide channel junctions. A method of making the IGFET includes providing a semiconductor substrate, forming a gate with first and second opposing sidewalls over the substrate, applying a first ion implantation to implant lightly doped source and drain regions into the substrate, applying a second ion implantation to convert substantially all of the lightly doped source region into a heavily doped source region without doping the lightly doped drain region, forming a drain-side spacer adjacent to the second sidewall, and applying a third ion implantation to convert the heavily doped source region into an ultra-heavily doped source region and to convert a portion of the lightly doped drain region outside the drain-side spacer into a heavily doped drain region without doping a portion of the lightly doped drain region beneath the drain-side spacer. Advantageously, the IGFET has low source-drain series resistance and reduces hot carrier effects.
Abstract:
A semiconductor process in which spacer structures are used to reduce the minimum dimension of a shallow trench isolation structure. First and second spacer support structures are formed over first and second active regions within the semiconductor substrate, respectively. Thereafter, spacer structures are formed on side walls of the spacer support structures such that a trench region of the semiconductor substrate remains exposed. If the spacer support structures are formed a lateral distance from each other approximately equal to a minimum dimension of the photolithography apparatus, then the lateral dimension of the exposed region between the spacer structures is less than the minimum resolvable feature size of the photolithography apparatus. The isolation trench can then be etched into a trench region of the semiconductor substrate between the spacer structures. Thereafter, the trench is filled with an isolation dielectric and first and second transistors are formed within the first and second active regions respectively of the semiconductor substrate.
Abstract:
An asymmetrical IGFET including a lightly and heavily doped drain regions and an ultra-heavily doped source region is disclosed. Preferably, the lightly doped drain region and ultra-heavily doped source region provide channel junctions. A method of making the IGFET includes providing a semiconductor substrate, forming a gate with first and second opposing sidewalls over the substrate, applying a first ion implantation to implant lightly doped source and drain regions into the substrate, applying a second ion implantation to convert substantially all of the lightly doped source region into a heavily doped source region without doping the lightly doped drain region, forming a drain-side spacer adjacent to the second sidewall, and applying a third ion implantation to convert the heavily doped source region into an ultra-heavily doped source region and to convert a portion of the lightly doped drain region outside the drain-side spacer into a heavily doped drain region without doping a portion of the lightly doped drain region beneath the drain-side spacer. Advantageously, the IGFET has low source-drain series resistance and reduces hot carrier effects.
Abstract:
A nitrogen implanted region formed substantially below and substantially adjacent to a source/drain region of an IGFET forms a liner to retard the diffusion of the source/drain dopant atoms during a subsequent heat treatment operation such as an annealing step. The nitrogen liner may be formed by implantation of nitrogen to a given depth before the implantation of source/drain dopant to a lesser depth. Nitrogen may also be introduced into regions of the IGFET channel region beneath the gate electrode for retarding subsequent lateral diffusion of the source/drain dopant. Such nitrogen introduction may be accomplished using one or more angled implantation steps, or may be accomplished by annealing an implanted nitrogen layer formed using a perpendicular implant aligned to the gate electrode. The liner may be formed on the drain side of the IGFET or on both source and drain side, and may be formed under a lightly-doped region or under a heavily-doped region of the drain and/or source. Such a liner is particularly advantageous for boron-doped source/drain regions, and may be combined with N-channel IGFETs formed without such liners.
Abstract:
A method includes processing a workpiece in a manufacturing system (10) including a plurality of tools (30). Workpiece fabrication data related to the processing is retrieved. Future processing in the manufacturing system (10) is simulated based on the workpiece fabrication data. At least one process parameter for the future processing is predicted based on the simulating. The workpiece is processed in at least one of the tools (30) based on the predicted process parameter. A system (10) includes a plurality of tools (30) configured to process a workpiece and a simulation unit (110). The simulation unit (110) is configured to retrieve workpiece fabrication data related to the processing, simulate future processing for the workpiece based on the workpiece fabrication data, and predict at least one process parameter for the future processing based on the simulating, wherein at least one of the tools (30) is configured to process the workpiece based on the predicted process parameter.
Abstract:
Semiconductor devices with improved transistor performance are fabricated by forming a composite oxide/nitride liner (24,25) under a gate electrode sidewall spacer (40). Embodiements include depositing a conformal oxide layer (24) by decoupled plasma deposition, depositing a conformal nitride layer (25) by decoupled plasma deposition, depositing a spacer layer (30) and then etching.