Abstract:
A method and apparatus for cleaning residue from components of the vacuum chamber and beamline of an ion implanter used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive halide composition for sufficient time and under sufficient conditions to at least partially remove the residue. The gas-phase reactive halide composition is chosen to react selectively with the residue, while not reacting with the components of the ion source region of the vacuum chamber.
Abstract:
An auto-switching sub-atmospheric pressure gas delivery system, for dispensing gas to a gas-consuming process unit, e.g., a semiconductor manufacturing tool. The gas delivery system uses a multiplicity of gas panels, wherein one panel is in active gas dispensing mode and supplying gas from a sub-atmospheric pressure gas source coupled to the flow circuitry of the panel. During the active gas dispensing operation in such panel, a second gas panel of the system undergoes purge, evacuation and fill transition to active gas dispensing condition, to permit switching to the second panel upon exhaustion of the sub-atmospheric pressure gas source coupled to the first gas panel without the occurrence of pressure spikes or flow perturbations.
Abstract:
A method and apparatus for cleaning residue from components of semiconductor processing systems used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive material for sufficient time and under sufficient conditions to at least partially remove the residue. When the residue and the material from which the components are constructed are different, the gas-phase reactive material is selectively reactive with the residue and minimally reactive with the materials from which the components of the ion implanter are constructed. When the residue and the material from which the components are constructed is the same, then the gas-phase reactive material may be reactive with both the residue and the component part. Particularly preferred gas-phase reactive materials utilized comprise gaseous compounds such as XeF2, XeF4, XeF6, NF3, IF5, IF7, SF6, C2F6, F2, CF4, KrF2, Cl2, HCl, ClF3, ClO2, N2F4, N2F2, N3F, NFH2, NH2F, HOBr, Br2, C3F8, C4F8, C5F8, CHF3, CH2F2, CH3F, COF2, HF, C2HF5, C2H2F4, C2H3F3, C2H4F2, C2H5F, C3F6, and organochlorides such as COCl2, CCl4, CHCl3, CH2Cl2 and CH3Cl.
Abstract:
A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
Abstract:
A method and apparatus for cleaning residue from components of the vacuum chamber and beamline of an ion implanter used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive halide composition for sufficient time and under sufficient conditions to at least partially remove the residue. The gas-phase reactive halide composition is chosen to react selectively with the residue, while not reacting with the components of the ion source region of the vacuum chamber.
Abstract:
A germane storage and dispensing system, in which germane gas is sorptively retained on an activated carbon sorbent medium in a vessel containing adsorbed and free germane gas. The activated carbon sorbent medium is deflagration-resistant in relation to the germane gas adsorbed thereon, i.e., under deflagration conditions of 65° C. and 650 torr, under which free germane gas undergoes deflagration, the activated carbon sorbent medium does not sustain deflagration of the adsorbed germane gas or thermally desorb the germane gas so that it undergoes subsequent deflagration. The deflagration-resistance of the activated carbon sorbent medium is promoted by pre-treatment of the sorbent material to remove extraneous sorbables therefrom and by maintaining the fill level of the sorbent medium in the gas storage and dispensing vessel at a substantial value, e.g., of at least 30%.
Abstract:
An apparatus for storage and dispensing of a gas, comprising a gas storage and dispensing vessel holding a physical sorbent medium and gas adsorbed on the physical sorbent medium, wherein a carrier gas, e.g., helium, hydrogen, argon, etc., is flowed through the vessel to effect desorption of the sorbate gas and entrainment of the desorbed gas in the carrier gas stream. The storage and dispensing system of the invention may be employed to provide the dispensed sorbate gas to a downstream locus of use in applications such as epitaxial film formation and ion implantation, in the manufacture of semiconductor devices.
Abstract:
A GERMANE STORAGE AND DISPENSING SYSTEM (110), IN WHICH GERMANE GAS IS SORPTIVELY RETAINED ON AN ACTIVATED CARBON SORBENT MEDIUM (116) IN A VESSEL (112) CONTAINING ADSORBED AND FREE GERMANE GAS. THE ACTIVATED CARBON SORBENT MEDIUM IS DEFLAGRATION-RESISTANT IN RELATION TO THE GERMANE GAS ADSORBED THEREON, I.E., UNDER DEFLAGRATION CONDITIONS OF 65° C. AND 650 TORR, UNDER WHICH FREE GERMANE GAS UNDERGOES DEFLAGRATION, THE ACTIVATED CARBON SORBENT MEDIUM DOES NOT SUSTAIN DEFLAGRATION OF THE ADSORBED GERMANE GAS OR THERMALLY DESORB THE GERMANE GAS SO THAT IT UNDERGOES SUBSEQUENT DEFLAGRATION. THE DEFLAGRATION-RESISTANCE OF THE ACTIVATED CARBON SORBENT MEDIUM IS PROMOTED BY PRE-TREATMENT OF THE SORBENT MATERIAL TO REMOVE EXTRANEOUS SORBABLES THEREFROM AND BY MAINTAINING THE FILL LEVEL OF THE SORBENT MEDIUM IN THE GAS STORAGE AND DISPENSING VESSEL AT A SUBSTANTIAL VALUE, E.G., OF AT LEAST 30%.(FIG 5)
Abstract:
A method and apparatus for cleaning residue from components of the vacuum chamber and beamline of an ion implanter used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive halide composition for sufficient time and under sufficient conditions to at least partially remove the residue. The gas-phase reactive halide composition is chosen to react selectively with the residue, while not reacting with the components of the ion source region of the vacuum chamber.
Abstract:
A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.