Abstract:
An IC that includes an eye viewer and a BER checker coupled to the eye viewer, where the BER checker receives a serial data signal from the eye viewer, is provided. In one implementation, the BER checker receives the serial data signal from the eye viewer without the serial data signal passing through a deserializer. In one implementation, the BER checker compares the serial data signal against a reference data signal to determine the BER for the serial data signal. In one implementation, the IC includes an IC core coupled to the eye viewer and the BER checker, where the BER checker is outside the IC core. In one implementation, the BER checker is a dedicated BER checker. In one implementation, the BER checker includes an exclusive OR gate, a programmable delay circuit coupled to the exclusive OR gate, and an error counter coupled to the exclusive OR gate.
Abstract:
An integrated circuit ("IC") may include circuitry for use in testing a serial data signal. The IC may include circuitry for transmitting the serial data signal with optional jitter, optional noise, and/or controllably variable drive strength. The IC may also include circuitry for receiving the serial data signal and performing a bit error rate ("BER") analysis in such a signal. The IC may provide output signals indicative of results of its operations. The IC can operate in various modes to perform or at least emulate functions of an oscilloscope, a bit error rate tester, etc., for testing signals and circuitry with respect to jitter-tolerance, noise-tolerance, etc.
Abstract:
Systems that provide integrated circuit device circuitry having an integrated optical-electronic interface for high-speed off-device communications are provided. An optical-electronic interface may be incorporated into an integrated circuit device, freeing up some or all of the electrical I/O pins of the integrated circuit device. Transceiver I/O channels may be provided on an integrated circuit device that can be switched between electrical and optical transceiver I/O channels.
Abstract:
A link simulation tool for simulating high-speed communications link systems is provided. Communications links may include link subsystems such as transmit (TX) circuitry, receive (TX) circuitry, oscillator circuits that provide reference clock signals to the TX and RX circuitry, and channels that link the TX and RX circuitry. The link simulation tool may model each of the subsystems using behavioral models. The behavioral models may include characteristic functions such as transfer functions, probability density functions, and eye characteristics. The link simulation tool may have a link analysis engine that is capable of performing two- dimensional (two-variable) convolution operations and in applying dual-domain (frequency-time) transformations on the characteristic functions provided by the behavioral models to simulate the performance of the link system. The link simulation tool may have an input screen that allows a user to specify desired link parameters and a data display screen that display simulated results.
Abstract:
A link simulation tool for simulating high-speed communications link systems is provided. Communications links may include link subsystems such as transmit (TX) circuitry, receive (TX) circuitry, oscillator circuits that provide reference clock signals to the TX and RX circuitry, and channels that link the TX and RX circuitry. The link simulation tool may model each of the subsystems using behavioral models. The behavioral models may include characteristic functions such as transfer functions, probability density functions, and eye characteristics. The link simulation tool may have a link analysis engine that is capable of performing two-dimensional (two-variable) convolution operations and in applying dual-domain (frequency-time) transformations on the characteristic functions provided by the behavioral models to simulate the performance of the link system. The link simulation tool may have an input screen that allows a user to specify desired link parameters and a data display screen that display simulated results.
Abstract:
An IC that includes an eye viewer and a BER checker coupled to the eye viewer, where the BER checker receives a serial data signal from the eye viewer, is provided. In one implementation, the BER checker receives the serial data signal from the eye viewer without the serial data signal passing through a deserializer. In one implementation, the BER checker compares the serial data signal against a reference data signal to determine the BER for the serial data signal. In one implementation, the IC includes an IC core coupled to the eye viewer and the BER checker, where the BER checker is outside the IC core. In one implementation, the BER checker is a dedicated BER checker. In one implementation, the BER checker includes an exclusive OR gate, a programmable delay circuit coupled to the exclusive OR gate, and an error counter coupled to the exclusive OR gate.