Abstract:
The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
Abstract:
A light-emitting device includes a transparent substrate, a transparent adhesive layer on the transparent substrate, a first transparent conductive layer on the transparent adhesive layer, a multi-layer epitaxial structure and a first electrode on the transparent conductive layer, and a second electrode on the multi-layer epitaxial structure. The multi-layer epitaxial structure includes a light-emitting layer. The transparent substrate has a first surface facing the transparent adhesive layer and a second surface opposite to the first surface, wherein the area of the second surface is larger than that of the light-emitting layer, and the area ratio thereof is not less than 1.6.
Abstract:
The present disclosure provides a method of manufacturing a light-emitting device, which comprises providing a first substrate and a plurality of semiconductor stacked blocks comprising a first semiconductor stacked block and a second semiconductor stacked block on the first substrate, and each of the plurality semiconductor stacked blocks comprises a first conductive-type semiconductor layer, a light-emitting layer on the first conductive-type semiconductor layer, and a second conductive-type semiconductor layer on the light-emitting layer; conducting a separating step to separate the first semiconductor stacked block from the first substrate, and the second semiconductor stacked block remains on the first substrate; providing an element substrate comprising a patterned metal layer; and conducting a bonding step to bond and align the first semiconductor stacked block or the second semiconductor stacked block with the patterned metal layer.
Abstract:
The present disclosure provides a method of manufacturing a light-emitting device, which comprises providing a first substrate and a plurality of semiconductor stacked blocks on the first substrate, and each of the plurality semiconductor stacked blocks comprises a first conductive-type semiconductor layer, a light-emitting layer on the first conductive-type semiconductor layer, and a second conductive-type semiconductor layer on the light-emitting layer; wherein there is a trench separating two adjacent semiconductor stacked blocks on the first substrate, and a width of the trench is less than 10 μm; and conducting a first separating step to separate a first semiconductor stacked block of the plurality of semiconductor stacked blocks from the first substrate and keep a second semiconductor stacked block on the first substrate.
Abstract:
An integrated lighting apparatus comprises a first control device including a semiconductor substrate, an integrated circuit block formed above a first portion of the semiconductor substrate, and a plurality of power pads formed above the integrated circuit block; a first light emitting device formed above a second portion of the semiconductor substrate; and a through plug passing through the semiconductor substrate for electrically connecting the first control device and the first light emitting device.
Abstract:
A light-emitting device includes a semiconductor light-emitting stack; a current injected portion formed on the semiconductor light-emitting stack; an extension portion having a first branch radiating from the current injected portion and a second branch extending from the first branch; an electrical contact structure between the second branch and the semiconductor light-emitting stack and having a first width; and a current blocking structure located right beneath the electrical contact structure and having a second width larger than the first width.
Abstract:
This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.
Abstract:
The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
Abstract:
This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.
Abstract:
A light-emitting device comprises a first light-emitting semiconductor stack comprising a first active layer; a second light-emitting semiconductor stack below the first light-emitting semiconductor stack, wherein the second light-emitting semiconductor stack comprises a second active layer; a reflector between the first light-emitting semiconductor stack and the second light-emitting semiconductor stack; a protecting layer between the reflector and the second light-emitting semiconductor stack; and wherein the first light-emitting semiconductor stack further comprises a first semiconductor layer and a second semiconductor layer sandwiching the first active layer, the second light-emitting semiconductor stack further comprises a third semiconductor layer and a fourth semiconductor layer sandwiching the second active layer, wherein the second semiconductor layer has a first band gap, the third semiconductor layer has a second band gap, and the protecting layer has a third band gap between the first band gap and the second band gap.