Abstract:
A semiconductor light-emitting device comprises an epitaxial structure for emitting a light and comprises an edge, a first portion and a second portion surrounding the first portion, wherein a concentration of a doping material in the second portion is higher than that of the doping material in the first portion, a main light-extraction surface on the epitaxial structure and comprises a first light-extraction region corresponding to the first portion and a second light-extraction region corresponding to the second portion and an edge, wherein the second portion is between the edge and the first portion.
Abstract:
A light-emitting device of an embodiment of the present application comprises a substrate; a first semiconductor light-emitting structure formed on the substrate, wherein the first semiconductor light-emitting structure comprises a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type and a first active layer formed between the first semiconductor layer and the second semiconductor layer, wherein the first active layer is capable of emitting a first light having a first dominant wavelength; and a first thermal-sensitive layer formed on a path of the first light, wherein the first thermal-sensitive layer comprises a material characteristic which varies with a temperature change.
Abstract:
A method of transferring semiconductor devices from a first substrate to a second substrate, including providing the semiconductor devices which are between the first substrate and the second substrate. The semiconductor devices include a first semiconductor device and a second semiconductor device, and the first semiconductor device and the second semiconductor device have a first gap between thereof. The first semiconductor device and the second semiconductor device are moved from the first substrate by a picking unit. The picking unit, the first semiconductor device, and the second semiconductor device are moved close to the second substrate. The picking unit has a space apart from the second substrate. The first semiconductor device and the second semiconductor device are transferred from the picking unit to the second substrate. The he first semiconductor device and the second semiconductor device on the second substrate have a second gap between thereof. The first gap and the second gap are different.
Abstract:
A semiconductor light-emitting device comprises an epitaxial structure comprising a first semiconductor stack, a second semiconductor stack, and an active layer between the first semiconductor stack and second semiconductor stack for emitting a light; and a main light-extraction surface on the first semiconductor stack, wherein the light passes through the main light-extraction surface. The main light-extraction surface comprises a first light-extraction region, a second light-extraction region, and a maximum near-field luminous intensity. The distribution of the near-field luminous intensity in the first light-extraction region is between 70% and 100% of the maximum near-field luminous intensity, the distribution of the near-field luminous intensity in the second light-extraction region is between 0% and 70% of the maximum near-field luminous intensity. A ratio of an area of the first light-extraction region to an area of the second light-extraction region is between 0.25 and 0.45.
Abstract:
A light-emitting device comprises a substrate; and a semiconductor stack comprising a III-V group material formed on the substrate, wherein the substrate comprises a first amorphous portion adjacent to the semiconductor stack, and a portion having a material different from that of the first amorphous portion and away from the semiconductor stack, wherein the first amorphous portion has a first refractive index, the portion has a second refractive index, and the first refractive index is higher than the second refractive index and lower than a refractive index of the semiconductor stack.
Abstract:
A semiconductor structure comprises a substrate, an adhesion layer, arranged on the substrate, a first release layer, arranged on the adhesion layer and a first semiconductor device, comprising a semiconductor epitaxial stack, and a conducting layer directly connected to the first release layer, wherein the first semiconductor device is not electrically connected to the substrate by the adhesion layer and the first release layer.
Abstract:
Disclosed is a light-emitting device comprising a light-emitting stack having a length, a width, a first semiconductor layer, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer, wherein the first semiconductor layer, the active layer, and the second semiconductor layer are stacked in a stacking direction. A first electrode is coupled to the first semiconductor layer and extended in a direction parallel to the stacking direction and a second electrode is coupled to the second semiconductor layer and extended in a direction parallel to the stacking direction. A dielectric layer is disposed between the first electrode and the second electrode.
Abstract:
A light-emitting device comprising: a supportive substrate; a transparent layer formed on the supportive substrate, and the transparent layer comprising conductive metal oxide material; a light-emitting stacked layer comprising an active layer formed on the transparent layer; and an etching-stop layer formed between the light-emitting stacked layer and the supportive substrate and contacting the transparent layer, wherein a thickness of the etching-stop layer is thicker than that of the transparent layer.
Abstract:
An optoelectronic element comprises a semiconductor stack comprising an active layer, wherein the semiconductor stack has a first surface and a second surface opposite to the first surface; a first transparent layer on the second surface; a plurality of cavities in the first transparent layer; and a layer on the first transparent layer, wherein the first transparent layer comprises oxide or diamond-like carbon.
Abstract:
A manufacturing method of a light-emitting device is disclosed. The method provides for patterning a semiconductor stack on a first substrate in order to form multiple light-emitting mesas. A second substrate is then bonded to the multiple light-emitting mesas and a reflective structure is formed on the first substrate. A metal layer is then applied on the reflective structure and the metal layer is patterned to form multiple metal mesas corresponding to the multiple light-emitting mesas, with a portion of the reflective structure being exposed.