Abstract:
There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.
Abstract:
A focused ion beam system includes a gas ion source and an emitter structure. The emitter structure includes a pair of conductive pins fixed to a base member, a filament connected between the pair of conductive pins, and an emitter which has a tip end with one atom or three atoms and which is connected to the filament. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
Disclosed is a composite charged particle beam apparatus including: an ion supply unit supplying an ion beam; an acceleration voltage application unit applying an acceleration voltage to the ion beam supplied by the ion supply unit to accelerate the ion beam; a first focusing unit focusing the ion beam; a beam booster voltage application unit applying a beam booster voltage to the ion beam; a second focusing unit focusing the ion beam to irradiate a sample; an electron beam emission unit emitting an electron beam to irradiate the sample; and a controller setting a value of the beam booster voltage that the beam booster voltage application unit applies to the ion beam, based on a value of the acceleration voltage applied to the ion beam by the acceleration voltage application unit and of a set value predetermined according to a focal distance of the focused ion beam.
Abstract:
A charged particle beam apparatus according to this invention includes: a gas introduction chamber, into which raw gas is introduced; a plasma generation chamber connected to the gas introduction chamber; a coil that is wound along an outer circumference of the plasma generation chamber and to which high-frequency power is applied; an electrode arranged at a boundary between the gas introduction chamber and the plasma generation chamber and having a plurality of through-holes formed therein; a plasma electrode that is provided apart from the electrode; a detection unit for detecting whether or not the plasma has been ignited in the plasma generation chamber; and a controller that controls, based on the result of detection by the detection unit, a voltage to be supplied to the plasma electrode in association with a predetermined pressure for supplying the raw gas.
Abstract:
A charged particle beam apparatus according to this invention includes: a gas introduction chamber, into which raw gas is introduced; a plasma generation chamber connected to the gas introduction chamber; a coil that is wound along an outer circumference of the plasma generation chamber and to which high-frequency power is applied; an electrode arranged at a boundary between the gas introduction chamber and the plasma generation chamber and having a plurality of through-holes formed therein; a plasma electrode that is provided apart from the electrode; a detection unit for detecting whether or not the plasma has been ignited in the plasma generation chamber; and a controller that controls, based on the result of detection by the detection unit, a voltage to be supplied to the plasma electrode in association with a predetermined pressure for supplying the raw gas.
Abstract:
A focused ion beam apparatus is equipped with a gas field ion source that can produce a focused ion beam for a long period of time by stably and continuously emitting ions from the gas field ion source having high luminance, along an optical axis of an ion-optical system for a long period of time. The gas field ion source has an emitter for emitting ions, the emitter having a sharpened end part made of iridium fixed to a cylinder-shaped base part made of dissimilar wire.
Abstract:
There is provided a repair apparatus including a gas field ion source which includes an ion generation section including a sharpened tip, a cooling unit which cools the tip, an ion beam column which forms a focused ion beam by focusing ions of a gas generated in the gas field ion source, a sample stage which moves while a sample to be irradiated with the focused ion beam is placed thereon, a sample chamber which accommodates at least the sample stage therein, and a control unit which repairs a mask or a mold for nano-imprint lithography, which is the sample, with the focused ion beam formed by the ion beam column. The gas field ion source generates nitrogen ions as the ions, and the tip is constituted by an iridium single crystal capable of generating the ions.
Abstract:
An ion beam apparatus includes an ion source configured to emit an ion beam, a condenser lens electrode that condenses the ion beam, and a condenser lens power source configured to apply a voltage to the condenser lens electrode. A storage portion stores a first voltage value, a second voltage value, a third voltage value, and a fourth voltage value. A control portion retrieves the third voltage value from the storage portion and sets the retrieved third voltage value to the condenser lens power source when an observation mode is switched to a wide-range observation mode, and retrieves the fourth voltage value from the storage portion and sets the retrieved fourth voltage value to the condenser lens power source when a processing mode is switched to the wide-range observation mode.
Abstract:
There is provided a repair apparatus including a gas field ion source which includes an ion generation section including a sharpened tip, a cooling unit which cools the tip, an ion beam column which forms a focused ion beam by focusing ions of a gas generated in the gas field ion source, a sample stage which moves while a sample to be irradiated with the focused ion beam is placed thereon, a sample chamber which accommodates at least the sample stage therein, and a control unit which repairs a mask or a mold for nano-imprint lithography, which is the sample, with the focused ion beam formed by the ion beam column. The gas field ion source generates nitrogen ions as the ions, and the tip is constituted by an iridium single crystal capable of generating the ions.
Abstract:
There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.