Abstract:
PROBLEM TO BE SOLVED: To form a stratification structure of nano-meter(nm) scale particles by placing a lattice-shaped lattice layer containing deoxyribo nucleic acid(DNA) so as to form a cell of the lattice layer on the surface of a substrate, and arranging a single particle in each cell. SOLUTION: A lattice constant of a stratification structure (a second lattice) of nano-meter scale particles is controlled by a lattice layer coincident in DNA. A DNA lattice (a first lattice) is manufactured using an automatic synthesizing method, this arrangement causes DNA to form a regular arrangement in an opening or a lattice site by self organization so as to include a specific nucleotide base arrangement. Then (a) a substrate 1 having a surface, (b) the lattice- shaped lattice layer containing a DNA segment arranged so as to form a cell of the lattice layer are arranged on the surface of the substrate 1, and (c) at least one particle 3 is placed in each cell. Thus, a stratification structure of nano-meter scale particles can be easily formed.
Abstract:
PROBLEM TO BE SOLVED: To provide a nanoporous membrane structure used as a sacrifice membrane for defining the size and density of a hole in a membrane. SOLUTION: This method forms an inorganic membrane material 600 on a silicon substrate 604, forms a porous self-assembled material 606 on the inorganic membrane material 600, and forms the inorganic porous membrane which patterns the inorganic membrane material 600 by using the porous self-assembled material 606 as a mask. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method to form periodical arrangement of magnetic nano particles into a layer (which may be a single layer or multilayer) with high regularity and to stabilize the arrangement above described on a substrate. SOLUTION: Magnetic nano particles having substantially uniform diameter are arranged at substantially uniform interval on the surface of a substrate 5. The nano particles consist of a magnetic material selected from a group of elements of Co, Fe, Ni, Mn, Sm, Nd, Pr, Pt and Gd, intermetallic compds. of the above elements, binary alloys of the above elements, ternary alloys of the above elements, Fe oxides containing at least one kind of element above described except for Fe, barium ferrite and strontium ferrite. A wear-resistant coating film is preferably deposited so as to adhere the nano particles to the substrate 5 and to maintain the substantially uniform interval.
Abstract:
In one embodiment, hexagonal tiles encompassing a large are divided into three groups, each containing one-third of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group (01, 02, 03) are formed in a template layer (2OA, 2OB, 20C), and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self- aligned line and space structures (4OA, 5OA; 4OB, 5OB; 4OC, 50C) are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
Abstract:
A magnetic storage medium is disclosed which is formed from a layer of substantially uniformly spaced-apart magnetic nanoparticles of substantially uniform diameter disposed upon a surface of a substrate, with a coating, preferably of abrasion-resistant material, applied to adhere the nanoparticles to the substrate and to maintain their substantially uniform spaced-apart relationship. The nanoparticles are formed from a magnetic material selected from the group consisting of elements Co, Fe, Ni, Mn, Sm, Nd, Pr, Pt, Gd, an intermetallic compound of the aforesaid elements, a binary alloy of said elements, a ternary alloy of said elements, an oxide of Fe further comprising at least one of said elements other than Fe, barium ferrite, and strontium ferrite.
Abstract:
A magnetic storage medium is disclosed which is formed from a layer of substantially uniformly spaced-apart magnetic nanoparticles of substantially uniform diameter disposed upon a surface of a substrate, with a coating, preferably of abrasion-resistant material, applied to adhere the nanoparticles to the substrate and to maintain their substantially uniform spaced-apart relationship. The nanoparticles are formed from a magnetic material selected from the group consisting of elements Co, Fe, Ni, Mn, Sm, Nd, Pr, Pt, Gd, an intermetallic compound of the aforesaid elements, a binary alloy of said elements, a ternary alloy of said elements, an oxide of Fe further comprising at least one of said elements other than Fe, barium ferrite, and strontium ferrite.
Abstract:
A magnetic storage medium is disclosed which is formed from a layer of substantially uniformly spaced-apart magnetic nanoparticles of substantially uniform diameter disposed upon a surface of a substrate, with a coating, preferably of abrasion-resistant material, applied to adhere the nanoparticles to the substrate and to maintain their substantially uniform spaced-apart relationship. The nanoparticles are formed from a magnetic material selected from the group consisting of elements Co, Fe, Ni, Mn, Sm, Nd, Pr, Pt, Gd, an intermetallic compound of the aforesaid elements, a binary alloy of said elements, a ternary alloy of said elements, an oxide of Fe further comprising at least one of said elements other than Fe, barium ferrite, and strontium ferrite.
Abstract:
A magnetic storage medium is disclosed which is formed from a layer of substantially uniformly spaced-apart magnetic nanoparticles of substantially uniform diameter disposed upon a surface of a substrate, with a coating, preferably of abrasion-resistant material, applied to adhere the nanoparticles to the substrate and to maintain their substantially uniform spaced-apart relationship. The nanoparticles are formed from a magnetic material selected from the group consisting of elements Co, Fe, Ni, Mn, Sm, Nd, Pr, Pt, Gd, an intermetallic compound of the aforesaid elements, a binary alloy of said elements, a ternary alloy of said elements, an oxide of Fe further comprising at least one of said elements other than Fe, barium ferrite, and strontium ferrite.