Monolithic integrated photonics with lateral bipolar and bicmos

    公开(公告)号:GB2538348A

    公开(公告)日:2016-11-16

    申请号:GB201604084

    申请日:2016-03-10

    Applicant: IBM

    Abstract: After forming a first trench extending through a top semiconductor layer and a buried insulator layer and into a handle substrate 10 of a semiconductor-on-insulator (SOI substrate 8, a dielectric waveguide material stack 22, 24, 26 including a lower dielectric cladding layer, a core layer and an upper dielectric cladding layer is formed within the first trench. Next, at least one lateral bipolar junction transistor (BJT), which can be a PNP BJT 30, an NPN BJT 40 or a pair of complementary PNP BJT 30 and NPN BJT 40, is formed in a remaining portion of the top semiconductor layer. After forming a second trench extending through the dielectric waveguide material stack to re-expose a portion of a bottom surface of the first trench, a laser diode is formed in the second trench. An optoelectronic device, for example a laser diode 60 may be formed on top of the compound semiconductor buffer layer 58 and edge coupled to the dielectric waveguide 22, 24, 26.

    Package structures having integrated waveguides for high speed communications between package components

    公开(公告)号:GB2551298B

    公开(公告)日:2018-04-25

    申请号:GB201714391

    申请日:2016-02-15

    Applicant: IBM

    Abstract: Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.

    Monolithic integrated photonics with lateral bipolar and bicmos

    公开(公告)号:GB2538348B

    公开(公告)日:2019-06-05

    申请号:GB201604084

    申请日:2016-03-10

    Applicant: IBM

    Abstract: After forming a first trench extending through a top semiconductor layer and a buried insulator layer and into a handle substrate of a semiconductor-on-insulator (SOI) substrate, a dielectric waveguide material stack including a lower dielectric cladding layer, a core layer and an upper dielectric cladding layer is formed within the first trench. Next, at least one lateral bipolar junction transistor (BJT), which can be a PNP BJT, an NPN BJT or a pair of complementary PNP BJT and NPN BJT, is formed in a remaining portion of the top semiconductor layer. After forming a second trench extending through the dielectric waveguide material stack to re-expose a portion of a bottom surface of the first trench, a laser diode is formed in the second trench.

Patent Agency Ranking