Abstract:
A fuse window (110) structure and method for forming the same for a semiconductor device with a fuse (102) and a cutting site on the fuse, the structure having (1) a first oxide region (116) substantially in register with the cutting site, the first oxide region having a first thickness, (2) a second oxide region (118) substantially in register with a first land generally surrounding the cutting site, the first land generally in register with the fuse, the second region having a second thickness, and (3) a third oxide region (120) substantially in register with a second land generally surrounding the fuse (102), the third region having a third thickness different than the first thickness. Different fuse window structures are formed by using etch stops (106,108) with different configurations, each configuration differing with regard to coverage of the three oxide regions.
Abstract:
Electrically conducting vias and lines are created by a three step process. First, a controlled amount of a soft, low resistivity metal (12) is deposited in a trench or hole to a point below the top surface of the dielectric (10) in which the trench or hole is formed. Subsequently, the low resistivity metal (12) is overcoated with a hard metal (16) such as CVD tungsten. Finally, chemical-mechanical polishing is used to planarize the structure. The hard metal (16) serves the function of protecting the low resistivity metal (12) from scratches and corrosion which would ordinarily be encountered if the low resistivity metal were subjected to the harsh chemical-mechanical polishing slurries. An ideal method for partially filling trenches or holes in a substrate is by sputtering at elevated temperatures such that metallization at the bottom of a trench or hole separates from metallization on a top surface adjacent the trench or hole. An etchback procedure may also be used to separate metallization in a trench or hole from metallization adjacent a trench or hole. Trenchs and holes may also be filled by selective deposition. In addition, trenches and holes may also be lined by a metal liner (18) prior to metallization (12) deposition which can serve as a diffusion barrier.
Abstract:
In an integrated circuit having interconnecting lines formed on an insulated layer deposited on a semiconductor substrate which provide connections between elements integral to the integrated circuit, a fuse structure programmable by a laser beam that includes: a melt-away elongated fuse link joining two segments of an interconnecting line; a plurality of fins integral and coplanar to the fuse link, each of the fins transversally extending away from the fuse link for absorbing energy emitted by the laser beam; and a reflecting plate positioned underneath the fuse link to reflect energy provided by the laser beam back into the fuse link, such that both the combination of the fins and the reflecting plate reduces the energy emitted by the laser beam required to blow the fuse structure.
Abstract:
Electrically conducting vias and lines are created by a three step process. First, a controlled amount of a soft, low resistivity metal (12) is deposited in a trench or hole to a point below the top surface of the dielectric (10) in which the trench or hole is formed. Subsequently, the low resistivity metal (12) is overcoated with a hard metal (16) such as CVD tungsten. Finally, chemical-mechanical polishing is used to planarize the structure. The hard metal (16) serves the function of protecting the low resistivity metal (12) from scratches and corrosion which would ordinarily be encountered if the low resistivity metal were subjected to the harsh chemical-mechanical polishing slurries. An ideal method for partially filling trenches or holes in a substrate is by sputtering at elevated temperatures such that metallization at the bottom of a trench or hole separates from metallization on a top surface adjacent the trench or hole. An etchback procedure may also be used to separate metallization in a trench or hole from metallization adjacent a trench or hole. Trenchs and holes may also be filled by selective deposition. In addition, trenches and holes may also be lined by a metal liner (18) prior to metallization (12) deposition which can serve as a diffusion barrier.
Abstract:
Electrically conducting vias and lines are created by a three step process. First, a controlled amount of a soft, low resistivity metal (12) is deposited in a trench or hole to a point below the top surface of the dielectric (10) in which the trench or hole is formed. Subsequently, the low resistivity metal (12) is overcoated with a hard metal (16) such as CVD tungsten. Finally, chemical-mechanical polishing is used to planarize the structure. The hard metal (16) serves the function of protecting the low resistivity metal (12) from scratches and corrosion which would ordinarily be encountered if the low resistivity metal were subjected to the harsh chemical-mechanical polishing slurries. An ideal method for partially filling trenches or holes in a substrate is by sputtering at elevated temperatures such that metallization at the bottom of a trench or hole separates from metallization on a top surface adjacent the trench or hole. An etchback procedure may also be used to separate metallization in a trench or hole from metallization adjacent a trench or hole. Trenchs and holes may also be filled by selective deposition. In addition, trenches and holes may also be lined by a metal liner (18) prior to metallization (12) deposition which can serve as a diffusion barrier.
Abstract:
The melting spot structure in an integrated circuit coupler transverse coupling lines forming on an insulating layer on a semiconductor substrate for connections between elements of the integrated circuit. An elongated, metal rated melting spot coupler two segments of an intermediate coupling line. It has an integral finger, coupled in coplanar manner to the rated melting spot, from which it extends transversely for energy retaining, radiated from the laser beam. It reduces the laser energy required for melting the melting spot structure.
Abstract:
Electrically conducting vias and lines are created by a three step process. First, a controlled amount of a soft, low resistivity metal (12) is deposited in a trench or hole to a point below the top surface of the dielectric (10) in which the trench or hole is formed. Subsequently, the low resistivity metal (12) is overcoated with a hard metal (16) such as CVD tungsten. Finally, chemical-mechanical polishing is used to planarize the structure. The hard metal (16) serves the function of protecting the low resistivity metal (12) from scratches and corrosion which would ordinarily be encountered if the low resistivity metal were subjected to the harsh chemical-mechanical polishing slurries. An ideal method for partially filling trenches or holes in a substrate is by sputtering at elevated temperatures such that metallization at the bottom of a trench or hole separates from metallization on a top surface adjacent the trench or hole. An etchback procedure may also be used to separate metallization in a trench or hole from metallization adjacent a trench or hole. Trenchs and holes may also be filled by selective deposition. In addition, trenches and holes may also be lined by a metal liner (18) prior to metallization (12) deposition which can serve as a diffusion barrier.
Abstract:
A sputtering deposition wherein high aspect ratio apertures (50) are coated with conductive films (40) exhibiting low bulk resistivity, low impurity concentrations, and regular morphologies. A collimator (60) is used having an aspect ratio that approximates the aspect ratio of the apertures (50). The resulting film thickness at the bottom of the aperture is at least 2X what can be achieved using conventional sputtering methods.