Abstract:
PROBLEM TO BE SOLVED: To provide an ability to test and 'burn in' device chips that require ultra high pitch I/O pads. SOLUTION: A system for testing a collection of the device chips by temporarily attaching them to a carrier having a plurality of receptacles with microdendritic features; the receptacles matching with and pushed in contact with a matching set of contact pads on the device chips; the carrier additionally having test pads connected to the receptacles through interconnect wiring. The system allows connecting the chips together and testing the collection as a whole by probing the test pads on the carrier. Burn-in of the collection of chips can also be performed on the temporary carrier, which is reusable. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a system making an interconnection with a quite high density by connecting device chips and a chip carrier by using a microjoint interconnect structure. SOLUTION: In the system, a pair of device chips is mounted on a microjoint interconnect chip carrier by using a microjoint interconnect structure. The microjoint interconnect chip carrier comprises a multilayer substrate having a plurality of receptacles on its surface. A pair of microjoint interconnect pads corresponding to the receptacles is provided on the device chips. Interconnecting wiring enabling an interconnection between the device chips is provided between the receptacles. COPYRIGHT: (C)2003,JPO
Abstract:
A semiconductor or dielectric wafer with conducting vias is used as a substrate in an integrated circuit packaging structure, where high density inter and intra chip contacts and wiring are positioned on the substrate face on which the integrated circuitry is mounted, and external signal and power circuitry is contacted through the opposite face. Use of a substrate such as silicon permits the use of conventional silicon processes available in the art for providing high wiring density together with matching of the thermal expansion coefficient of any silicon chips in the integrated circuits. The use of vias through the substrate allows a high density of connections leaving the silicon substrate and provides short paths for the connections of power and signals.
Abstract:
A semiconductor or dielectric wafer with conducting vias is used as a substrate in an integrated circuit packaging structure, where high density inter and intra chip contacts and wiring are positioned on the substrate face on which the integrated circuitry is mounted, and external signal and power circuitry is contacted through the opposite face. Use of a substrate such as silicon permits the use of conventional silicon processes available in the art for providing high wiring density together with matching of the thermal expansion coefficient of any silicon chips in the integrated circuits. The use of vias through the substrate allows a high density of connections leaving the silicon substrate and provides short paths for the connections of power and signals.
Abstract:
A system for interconnecting a set of device chips by means of an array of microjoints disposed on an interconnect carrier is taught. The carrier is provided with a dense array of microjoint receptacles with an adhesion layer, barrier layer and a noble metal layer; the device wafers are fabricated with an array of microjoining pads including an adhesion layer, barrier layer and a fusible solder layer with pads being located at matching locations in reference to the barrier receptacles; the device chips are joined to the carrier through the microjoint arrays resulting in interconnections capable of very high input/output density and inter-chip wiring density.
Abstract:
A system for interconnecting a set of device chips by means of an array of microjoints disposed on an interconnect carrier is taught. The carrier is provided with a dense array of microjoint receptacles with an adhesion layer, barrier layer and a noble metal layer; the device wafers are fabricated with an array of microjoining pads including an adhesion layer, barrier layer and a fusible solder layer with pads being located at matching locations in reference to the barrier receptacles; the device chips are joined to the carrier through the microjoint arrays resulting in interconnections capable of very high input/output density and inter-chip wiring density.
Abstract:
A system for interconnecting a set of device chips by means of an array of microjoints disposed on an interconnect carrier is taught. The carrier is provided with a dense array of microjoint receptacles with an adhesion layer, barrier layer and a noble metal layer; the device wafers are fabricated with an array of microjoining pads comprising an adhesion layer, barrier layer and a fusible solder layer with pads being located at matching locations in reference to the barrier receptacles; said device chips are joined to said carrier through the microjoint arrays resulting in interconnections capable of very high input/output density and inter-chip wiring density.
Abstract:
A semiconductor or dielectric wafer with conducting vias is used as a substrate in an integrated circuit packaging structure, where high density inter and intra chip contacts and wiring are positioned on the substrate face on which the integrated circuitry is mounted, and external signal and power circuitry is contacted through the opposite face. Use of a substrate such as silicon permits the use of conventional silicon processes available in the art for providing high wiring density together with matching of the thermal expansion coefficient of any silicon chips in the integrated circuits. The use of vias through the substrate allows a high density of connections leaving the silicon substrate and provides short paths for the connections of power and signals.
Abstract:
A system for interconnecting a set of device chips by means of an array of microjoints disposed on an interconnect carrier is taught. The carrier is provided with a dense array of microjoint receptacles with an adhesion layer , barrier layer and a noble metal layer; the device wafers are fabricated with an array of microjoining pads comprising an adhesion layer, barrier layer an d a fusible solder layer with pads being located at matching locations in reference to the barrier receptacles; said device chips are joined to said carrier through the microjoint arrays resulting in interconnections capable of very high input/output density and inter-chip wiring density.
Abstract:
A semiconductor or dielectric wafer with conducting vias is used as a substrate in an integrated circuit packaging structure, where high density inter and intra chip contacts and wiring are positioned on the substrate face on which the integrated circuitry is mounted, and external signal and power circuitry is contacted through the opposite face. Use of a substrate such as silicon permits the use of conventional silicon processes available in the art for providing high wiring density together with matching of the thermal expansion coefficient of any silicon chips in the integrated circuits. The use of vias through the substrate allows a high density of connections leaving the silicon substrate and provides short paths for the connections of power and signals.