Abstract:
A material stack (12) is provided comprising one or more films (14) that have a crack velocity of about IE- 10 m/sec or greater and at least one monolayer (16) within or in direct contact with the one or more films (14), wherein the at least one monolayer (16) reduces the crack velocity of the material stack (12) to a value of less than lE-10 m/sec. The one or more films ( 14) are not limited to low k dielectrics, but may include materials such as a metal. In a preferred embodiment, a low k dielectric stack (12) is provided, having an effective dielectric constant k, of about 3.0 or less, in which the mechanical properties of the stack (12) are improved by introducing at least one nanolayer (16) into the dielectric stack (12). The improvement in mechanical properties is achieved without significantly increasing the dielectric constant of me films within the stack (12) and without the need of subjecting the inventive dielectric stack (12) to any post treatment steps.
Abstract:
A material stack (12) is provided comprising one or more films (14) that have a crack velocity of about IE- 10 m/sec or greater and at least one monolayer (16) within or in direct contact with the one or more films (14), wherein the at least one monolayer (16) reduces the crack velocity of the material stack (12) to a value of less than lE-10 m/sec. The one or more films ( 14) are not limited to low k dielectrics, but may include materials such as a metal. In a preferred embodiment, a low k dielectric stack (12) is provided, having an effective dielectric constant k, of about 3.0 or less, in which the mechanical properties of the stack (12) are improved by introducing at least one nanolayer (16) into the dielectric stack (12). The improvement in mechanical properties is achieved without significantly increasing the dielectric constant of me films within the stack (12) and without the need of subjecting the inventive dielectric stack (12) to any post treatment steps.
Abstract:
A porous low k or ultra low k dielectric film comprising atoms of Si, C, O and H (hereinafter "SiCOH") in a covalently bonded tri-dimensional network structure having a dielectric constant of less than about 3.0, a higher degree of crystalline bonding interactions, more carbon as methyl termination groups and fewer methylene, -CH 2 - crosslinking groups than prior art SiCOH dielectrics is provided. The SiCOH dielectric is characterized as having a FTIR spectrum comprising a peak area for CH 3 +CH 2 stretching of less than about 1.40, a peak area for SiH stretching of less than about 0.20, a peak area for SiCH 3 bonding of greater than about 2.0, and a peak area for Si-O-Si bonding of greater than about 60%, and a porosity of greater than about 20%.
Abstract:
PROBLEM TO BE SOLVED: To reduce via resistance which often occurs at an interface between a liner and the underside of a copper (Cu) layer in a submicron semiconductor integrated circuit using low dielectric constant (low-k) organic ILD materials. SOLUTION: An adhesive catalyst is applied to an upper layer 30, and a silicon dioxide thin film 50 is formed on it by oxidizing the thin film adhesive catalyst before bonding the organic inter-level dielectric substance. In this way, problem is reduced on via resistance in heat cycle of a semiconductor wafer which materializes multilevel metal and organic inter-level dielectric substance. COPYRIGHT: (C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To obtain an interconnection part for an integrated circuit with improved electromigration characteristics. SOLUTION: An interconnection structure part includes titanium lower and upper layers 14 and 20, and the two titanium layers differ from each other in cleanliness. In order to improve electromigration, and to strongly obtain an intermediate layer 18 with texture, the titanium lower layer 14 is not relatively contaminated, and contains a contaminant of at most 5 wt.%. The intermediate layer 18 containing aluminum is formed between the titanium lower and upper layers 14 and 20. The titanium upper layer 20 is relatively more contaminated as compared with the titanium lower layer 14, contains a contaminant of more than 5 wt.%, and contributes to the maintenance of low area resistance.
Abstract:
A semiconductor device containing a diffusion barrier layer is provided. The semiconductor device includes at least a semiconductor substrate containing conductive metal elements; and, a diffusion layer applied to at least a portion of the substrate in contact with the conductive metal elements, the diffusion barrier layer having an upper surface and a lower surface and a central portion, and being formed from silicon, carbon, nitrogen and hydrogen with the nitrogen being non-uniformly distributed throughout the diffusion barrier layer. Thus, the nitrogen is more concentrated near the lower and upper surfaces of the diffusion barrier layer as compared to the central portion of the diffusion barrier layer. Methods for making the semiconductor devices are also provided.
Abstract:
Methods of forming devices include forming a first electrically insulating layer having a metal interconnection therein, on a substrate and then forming a first electrically insulating barrier layer on an upper surface of the metal interconnection and on the first electrically insulating layer. The first electrically insulating barrier layer is exposed to a plasma that penetrates the first electrically insulating barrier and removes oxygen from an upper surface of the metal interconnection. The barrier layer may have a thickness in a range from about 5 A to about 50 A and the plasma may be a hydrogen-containing plasma that converts oxygen on the upper surface of the metal interconnection to water.
Abstract:
BEOL INTERCONNECT STRUCTURES WITH IMPROVED RESISTANCE TO STRESS A chip is provided which includes a back-end-of-line ("BEOL") interconnect structure. The BEOL interconnect structure includes a plurality of interlevel dielectric ("ILD") layers which include a dielectric material curable by ultraviolet ("UV") radiation. A plurality of metal interconnect wiring layers are embedded in the plurality of ILD layers. Dielectric barrier layers cover the plurality of metal interconnect wiring layers, the dielectric barrier layers being adapted to reduce diffusion of materials between the metal interconnect wiring layers and the ILD layers. One of more of the dielectric barrier layers is adapted to retain compressive stress while withstanding UV radiation sufficient to cure the dielectric material of the ILD layers, making the BEOL structure better capable of avoiding deformation due to thermal and/or mechanical stress.
Abstract:
METHODS OF FORMING DUAL-DAMASCENE INTERCONNECT STRUCTURES USING ADHESION LAYERS HAVING HIGH INTERNAL COMPRESSIVE STRESS AND STRUCTURES FORMED THEREBY Methods of forming interconnect structures include forming a first metal wiring pattern on a first dielectric layer and forming a capping layer (e.g., SiCN layer) on the first copper wiring pattern. An adhesion layer is deposited on the capping layer, using a first source gas containing octamethylcyclotetrasilane (OMCTS) at a volumetric flow rate in a range from about 500 sccm to about 700 sccm and a second gas containing helium at a volumetric flow rate in a range from about 1000 to about 3000 sccm. The goal of the deposition step is to achieve an adhesion layer having an internal compressive stress of greater than about 150 MPa therein, so that the adhesion layer is less susceptible to etching/cleaning damage and moisture absorption during back-end processing steps. Additional dielectric and metal layers are then deposited on the adhesion layer. Fig. 2C