Abstract:
A method for fabricating germanium-on-insulator (GOI) substrate materials, the GOI substrate materials produced by the method and various structures that can include at least the GOI substrate materials of the present invention are provided. The GOI substrate material include at least a substrate, a buried insulator layer located atop the substrate, and a Ge-containing layer, preferably pure Ge, located atop the buried insulator layer. In the GOI substrate materials of the present invention, the Ge-containing layer may also be referred to as the GOI film. The GOI film is the layer of the inventive substrate material in which devices can be formed.
Abstract:
PROBLEM TO BE SOLVED: To provide a planar silicon-on-insulator(SOI) structure and a method for manufacturing the structure. SOLUTION: The SOI structure has a silicon wafer 10, an oxide layer 12 and a silicon layer 14. A trench is formed as extended from an upper surface of the structure to the silicon wafer, and the trench is filled with semiconductor 34. The trench has an upper part, a bottom surface and a sidewall. The sidewall has a sidewall silicon part. The sidewall silicon part of the trench sidewall is covered with a trench sidewall oxide layer 30. A protective sidewall 32 is formed on the trench sidewall and a trench sidewall oxide layer as extended from the upper part of the trench to the bottom surface of the trench.
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a IH-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a HI-V compound semiconductor barrier layer, and an optional, yet preferred, IH-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The HI-V compound semiconductor buffer layer and the HI-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the pi-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a IH-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a HI-V compound semiconductor barrier layer, and an optional, yet preferred, IH-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The HI-V compound semiconductor buffer layer and the HI-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the pi-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (SfD) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined withex situ heat treatments in a "divided-dose-anneal-in-between" (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
Abstract:
A high-performance semiconductor structure and a method of fabricating such a structure are provided. The semiconductor structure includes at least one gate stack (18), e.g., FET, located on an upper surface (14) of a semiconductor substrate (12). The structure further includes a first epitaxy semiconductor material (34) that induces a strain upon a channel (40) of the at least one gate stack. The first epitaxy semiconductor material is located at a footprint of the at least one gate stack substantially within a pair of recessed regions (28) in the substrate which are present on opposite sides of the at least one gate stack. A diffused extension region (38) is located within an upper surface of said first epitaxy semiconductor material in each of the recessed regions. The structure further includes a second epitaxy semiconductor material (36) located on an upper surface of the diffused extension region. The second epitaxy semiconductor material has a higher dopant concentration than the first epitaxy semiconductor material.
Abstract:
A planar silicon-on-insulator (SOI) structure and a process for fabricating the structure. The SOI structure has a silicon wafer, an oxide layer, and a silicon layer. Trenches are formed, extending from the top surface of the structure to the silicon wafer, and are filled with a semiconductor. The trenches have a top, a bottom, and side walls. The side walls have side-wall silicon portions. The side-wall silicon portions of the trench side walls are covered by trench side-wall oxide layers. A protective side wall extends over the trench side walls and trench side-wall oxide layers from the trench top to the trench bottom.
Abstract:
Ein ETSOI-Transistor und ein Kondensator werden in einer Transistor- bzw. einer Kondensatorzone durch Ätzen durch eine ETSOI-Schicht und eine dünne BOX-Schicht in einem Ersatz-Gate-HK/MG-Ablauf gebildet. Die Bildung des Kondensators ist mit einem ETSOI-Ersatz-Gate-CMOS-Ablauf kompatibel. Eine Kondensatorelektrode mit niedrigem Widerstand macht es möglich, einen Kondensator oder Varaktor hoher Qualität zu erhalten. Das Fehlen einer Topographie während des Strukturierens des Platzhalter-Gates wird durch Lithographie in Kombination mit einem geeigneten Ätzen ermöglicht.
Abstract:
An ETSOI transistor and a capacitor are formed respectively in a transistor and capacitor region thereof by etching through an ETSOI and thin BOX layers in a replacement gate HK/MG flow. The capacitor formation is compatible with an ETSOI replacement gate CMOS flow. A low resistance capacitor electrode makes it possible to obtain a high quality capacitor or varactor. The lack of topography during dummy gate patterning are achieved by lithography in combination accompanied with appropriate etch.
Abstract:
Verfahren zum Bilden einer Tandem-Fotovoltaikeinheit, wobei das Verfahren aufweist: Bereitstellen (102) von massivem Germanium oder einer auf einem Siliciumsubstrat gebildeten Germaniumschicht; Nassätzen der Germaniumschicht unter Verwendung eines sauren Ätzmittels, das Phosphorsäure, Wasserstoffperoxid und Ethanol in einem Verhältnis von 1:1:1 enthält; Bilden pyramidenartiger Formen (106; 108) in der Germaniumschicht derart, dass (111)-Kristallflächen (104) freigelegt werden, um eine texturierte Oberfläche zu bilden; Dotieren einer oberen Oberfläche (110) der Germaniumschicht, um einen ersten p-n-Übergang auf oder oberhalb der texturierten Oberfläche zu bilden; Abscheiden einer ersten Halbleiterschicht (112), die der texturierten Oberfläche folgt, auf der oberen Oberfläche, wobei die erste Halbleiterschicht eine GaAs-Schicht oder Legierungen daraus enthält; Dotieren eines Teils der ersten Halbleiterschicht, um einen zweiten p-n-Übergang (132) zu bilden; Abscheiden einer zweiten Halbleiterschicht (116), die dem Profil der texturierten Oberfläche folgt, auf der ersten Halbleiterschicht, wobei die zweite Halbleiterschicht eine GaP-Schicht oder Legierungen daraus enthält; und Dotieren eines Teils der zweiten Halbleiterschicht, um einen dritten p-n-Übergang (134) zu bilden.