Abstract:
A method for forming a single-junction photovoltaic cell includes forming a dopant layer on a surface of a semiconductor substrate; diffusing the dopant layer into the semiconductor substrate to form a doped layer of the semiconductor substrate; forming a metal layer over the doped layer, wherein a tensile stress in the metal layer is configured to cause a fracture in the semiconductor substrate; removing a semiconductor layer from the semiconductor substrate at the fracture; and forming the single-junction photovoltaic cell using the semiconductor layer. A single-junction photovoltaic cell includes a doped layer comprising a dopant diffused into a semiconductor substrate; a patterned conducting layer formed on the doped layer; a semiconductor layer comprising the semiconductor substrate located on the doped layer on a surface of the doped layer opposite the patterned conducting layer; and an ohmic contact layer formed on the semiconductor layer.
Abstract:
A dual gate extremely thin semiconductor-on-insulator transistor with asymmetric gate dielectrics is provided. This structure can improve the sensor detection limit and also relieve the drift effects. Detection is performed at a constant current mode while the species will be detected at a gate electrode with a thin equivalent oxide thickness (EOT) and the gate bias will be applied to the second gate electrode with thicker EOT to maintain current flow through the transistor. As a result, a small change in the charge on the first electrode with the thin EOT will be translated into a larger voltage on the gate electrode with the thick EOT to sustain the current flow through the transistor. This allows a reduction of the sensor dimension and therefore an increase in the array size. The dual gate structure further includes cavities, i.e., microwell arrays, for chemical sensing.
Abstract:
A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
Abstract:
A method for spalling a layer from an ingot of a semiconductor substrate includes forming a metal layer on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot; and removing the layer from the ingot at the fracture. A system for spalling a layer from an ingot of a semiconductor substrate includes a metal layer formed on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot, and wherein the layer is configured to be removed from the ingot at the fracture.
Abstract:
Epitaxieverfahren, aufweisend:Bereitstellen (502) eines kristallinen Substratmaterials (102);Anwachsen (504) eines Isolators (108) auf dem Substratmaterial (102);Öffnen (506) des Isolators (108), um frei liegende Bereiche des Substratmaterials (102) zu bilden;Abscheiden (512) von Silicium auf den frei liegenden Bereichen des Substratmaterials, um in einem Niedertemperaturverfahren auf den frei liegenden Bereichen epitaxiales Silicium (302) zu bilden und in anderen als den frei liegenden Bereichen nicht epitaxiales Silicium (310) zu bilden, wobei eine Abscheidungstemperatur weniger als 250 °C beträgt;Einbringen (518) eines Dotierstoffs mit einem Gasverhältnis, wodurch ein dotiertes epitaxiales Silicium bereitgestellt wird, wobei eine hohe Dotierstoffaktivierung höher als 1 x 1020cm-3erhalten wird; undÄtzen des nicht epitaxialen Siliciums unter Verwendung eines Plasmas, um die epitaxiale Abscheidung von Silicium über den frei liegenden Bereichen zu unterstützen,wobei das selektive epitaxiale Anwachsen durch Abwechseln der Abscheidungs- und Ätzschritte bereitgestellt wird.
Abstract:
Ein Verfahren zum Bilden einer Tandem-Fotovoltaikeinheit beinhaltet ein Bereitstellen einer Germaniumschicht und ein Ätzen pyramidenartiger Formen in der Germaniumschicht derart, dass (111)-Kristallflächen freigelegt werden, um eine texturierte Oberfläche zu bilden. Auf oder oberhalb der texturierten Oberfläche wird aus III–V-Halbleitermaterialien ein erster p-n-Übergang gebildet. Oberhalb des ersten p-n-Übergangs wird aus III–V-Halbleitermaterialien ein weiterer p-n-Übergang gebildet, der der texturierten Oberfläche folgt.
Abstract:
A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region (14) where the stressor layer (16) is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In a preferred embodiment of the present invention, the method includes forming an edge exclusion material (14) on an upper surface and near an edge of a base substrate (10â â ). A stressor layer (16) is then formed on exposed portions of the upper surface of the base substrate (10â â ) and atop the edge exclusion material (14). A portion (10â ) of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled and separated from the bulk of the substrate. The material is removed from the substrate by stresses caused by the stressor layer. An adhesive layer (15) can be formed between the substrate and stressor layer. This method improves the reusability of the substrate.
Abstract:
Die vorliegende Offenbarung stellt ein Verfahren bereit, um zwei Bauelement-Wafer aus einem einzelnen Basissubstrat zu bilden. Bei diesem Verfahren wird zunächst eine Struktur bereitgestellt, umfassend ein Basissubstrat mit auf oder innerhalb einer obersten Oberfläche und einer untersten Oberfläche des Basissubstrats aufgebrachten Bauelementschichten. Das Basissubstrat kann doppelseitig polierte Oberflächen aufweisen. Die Struktur mit den Bauelementschichten wird innerhalb eines bestimmten Bereichs des Basissubstrats gespalten, der zwischen den Bauelementschichten liegt. Durch das Spalten entsteht ein erster Bauelement-Wafer mit einem Teil des Basissubstrats und einer der Bauelementschichten, sowie ein zweiter Bauelement-Wafer mit einem anderen Teil des Basissubstrats und der anderen Bauelementschicht.