Abstract:
A method for electroplating a gate metal (9) or other conducting or semiconducting material on a gate dielectric (2) is provided. The method involves selecting a substrate (3, 4), dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be generated at an interface between the dielectric layer and the electrolyte solution or melt.
Abstract:
A contact metallurgy structure comprising a patterned dielectric layer having cavities on a substrate; a suicide or germanide layer such as of cobalt and/or nickel located at the bottom of cavities; a contact layer comprising Ti or Ti/TiN located on top of the dielectric layer and inside the cavities and making contact to the suicide or germanide layer on the bottom; a diffusion barrier layer located on top of the contact layer and inside the cavities; optionally a seed layer for plating located on top of the barrier layer; a metal fill layer in vias is provided along with a method of fabrication. The metal fill layer is electrodeposited with at least one member selected from the group consisting of copper, rhodium, ruthenium, iridium, molybdenum, gold, silver, nickel, cobalt, silver, gold, cadmium and zinc and alloys thereof. When the metal fill layer is rhodium, ruthenium, or iridium, an effective diffusion barrier layer is not required between the fill metal and the dielectric. When the barrier layer is platable, such as ruthenium, rhodium, platinum, or iridium, the seed layer is not required.